o5 Radio Shaek

COLOR
COMPUTER
DISK SYSTEM .

Important Notice: Your computer must be off when you connect the
disk interface. Otherwise, you could damage the system.

TERMS AND CONDITIONS QF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER. RETAIL STORE OR FROM A
RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
. CUSTOMER OBLIGATIONS

A, CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the “Equipment™). and any copies of Radio
Shack software included with the Equipment or licensed separately (the Software’') meets the specifications, capacity, capabilities,
versatility, and other requirements of CUSTOMER.

B CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation

. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety {30) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warranty is void if the Equipment’s case or cabinet has been opened, or if the Equipment or Software has been
subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period. the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole
expense. RADIO SHACK has no obligation to replace or repair expendable items.

B, RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this
paragraph. Software is licensed on an "AS IS" basis, without warranty. The original CUSTOMER'S exciusive remedy. in the event of a
Software manufacturing defect, is its repair or repiacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shail be returned to a Radio Shack Computer Center, a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK.

D. Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

. LIMITATION OF LIABILITY

A EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
“EQUIPMENT" OR "'SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO. ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE “EQUIPMENT" OR “SOFTWARE’". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT" OR “"SOFTWARE"".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY

CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR “EQUIPMENT” OR ""SOFTWARE"

INVOLVED.

RADIO SHACK shall not be liable for any damages caused by delay in deiivering or furnishing Equipment and/or Software.

No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years

after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or

Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages. so the above limitation(s) or exclusion(s) may
not apply to CUSTOMER.

IV. RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on ane computer, subject to the following

provisions:

. Except as otherwise provided in this Software License, applicable copyright taws shail apply to the Software.

B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to

the Software.

CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this

function.

CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically

provided in this Software License. Customer is expressly prohibited from disassembling the Software.

CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in

the operation of one computer with the Software, but only to the extent the Software aliows a backup copy to be made. However, for

TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmaodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each
one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER.

G. All copyright notices shall be retained on all copies of the Software.

V. APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER.

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and/or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK.

V. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary
from state to state.

o

QP

m o o

QD

The FCC wants you to know:

This equipment generates and uses radio frequency energy. If it is not installed and used properly,
that is, in strict accordance with the manufacturer’s instructions, it may cause interference to radio
and television reception. It has been type tested and found to comply with the limits for a Class B
computing device in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which
are designed to provide reasonable protection against such interference in a residential installa-
tion. However, there is no guarantee that interference will not occur in a particular installation. If
this equipment does cause interference to radio or television reception, which can be determined by
turning the equipment off and on, the user is encouraged to try to correct the interference by one
or more of the following measures:

* reorient the receiving antenna

* relocate the computer with respect to the receiver

» move the computer away from the receiver

» plug the computer into a different outlet so that computer and receiver are on different branch
circuits.

If necessary, the user should consult the dealer or an experienced radio/ television technician for
additional suggestions. The user may find the following booklet prepared by the Federal Commu-
nications Commission helpful: How to Identify and Resolve Radio-TV Interference Problems. This
booklet is available from the United States Government Printing Office, Washington, DC 20402,
Stock No. 004-000-0035-4.

TRS-80 Disk Extended Color
BASIC System Software: Copyright ©
1981 Tandy Corporation and Microsoft.

All rights reserved.

The system software in the disk system is retained in a read-only
memory (ROM) format. All portions of this system software,
whether in the ROM format or other source code format, and the
ROM circuitry, are copyrighted and are the proprietary and trade
secret information of Tandy Corporation and Microsoft. Use,
reproduction, or publication of any portion of this material, with-
out the prior written authorization by Tandy Corporation, is
strictly prohibited.

Color Computer Disk System:
Copyright © 1981 Tandy Corporation,
Fort Worth, Texas 76102, U.S.A.
All rights reserved.

Reproduction or use, without express written permission from
Tandy Corporation, of any portion of this manual, is prohibited.
While reasonable efforts have been taken in the preparation of the
manual to assure its accuracy, Tandy Corporation assumes no
liability resulting from any errors or omissions in this manual or
from the use of the information obtained herein.

Printed in the United States of America
8 3 2

10 9

7 6

4

WHY A DISK IS FAST

A disk is for storing your information. The precise
term for itis a ‘‘mini-diskette,’ but in this book we’ll
just call it a disk. It is far superior to tape, the other
alternative.

A disk is especially designed to ‘‘file’’ your infor-
mation so the Computer can immediately get the
information you want. For you, this means storing
and retrieving information — which takes a long
time on tape — now can be done quickly and
efficiently.

ABOUT THIS BOOK

This book shows how to read and write on a disk. When
we wrote it, we had three different groups of people in
mind.

The first group includes all of you accomplished Radio
Shack programmers. We are referring, of course, to
those of you who learned to program by reading Getting
Started with Color BASIC and Going Ahead with
Extended Color BASIC. You'll find Sections I and 1I of
this book another delightful experience. If you're espe-
cially ambitious, you’ll also enjoy Section IIl.

How about those of you who have never programmed
and intend to use application programs written by
Radio Shack or someone else? You’'re the second
group. Read Chapter 1, ‘‘To Get Started.’ Then, if you’re
interested in and want to take full advantage of your
disk system, go on to Section I, ‘“The Disk.’ You don’t
need to know anything about programming to under-
stand it.

If you don’t belong to either of these two groups, you
probably already know how to program disk systems.
Read Chapter 1 first to find out how to connect your sys-
tem. Then, go straight to the ‘‘BASIC Summary’’ at the
end of the book. Everything is summarized there with
page number references, for the things you want to read
more about.

TABLE OF CONTENTS

Chapter 1/ To Get Started 1

SECTION I. The Disk

Chapter 2/ Meet Your Disk, 7
Chapter 3/ A Garbled UpDisk 13
Chapter 4/ You’rethe Boss 19

SECTION II. The Disk Program

Chapter 5/ One ThingataTime 25
(Sequential Access to a File)

Chapter 6/ Changing It All Around 29
(Updating a Sequential Access File)

Chapter 7/ A More Direct Approach 33

(Direct Access to a File)

SECTION III. The Refined Disk Program

Chapter 8/ How Much Can One Disk Hold? 41
(What the Computer Writes in a Disk File)

Chapter 9/ Trimming the Fat Out of Direct Access 47
(Formatting a Direct Access File)

Chapter 10/ Shuffling Disk Files 53

"~ (Merging Programs, Using Many File Buffers)

Chapter 11/ Technical Information 57

(Machine-Language Input/Output)
Appendixes

Appendix A/ Programming Exercise Answers 64

Appendix B/ Chapter Checkpoint Answers 66

Appendix C/ Sample Programs 68

Appendix D/ ASCII Character Codes 79

Appendix E/ Memory Mapc.. i 81

Appendix F/ Specifications 82

Appendix G/ Exror Messages it 83

Appendix H BASIC Summaryccoiiiiiiiiniennnn. 85

: 8

i‘m""'

TO GET STARTED

Before you install your Disk System, youneedto =~ A. CONNECT DISK SYSTEM

connect your Color Computer to the T.V. If you

haven’t done it yet, refer to the Color Computer Your Disk System is easy to connect. Do it

Operation Manual. before you turn on your Computer by simply
plugging in all the parts:

Note: the dotted lines represent the connection of additional add-on drive .

TO GET STARTED

1. Connect the Disk Interface to the plug 3. Connect Plug B of your Disk Cable to

in the opening of your Computer. the plug on back of your Disk Drive.
Plug in the power cord to a standard
IMPORTANT NOTICE: YOUR COM- (120 V) electrical outlet.

PUTER MUST BE OFF WHEN YOU
CONNECT THE DISK INTERFACE.
OTHERWISE, YOU COULD DAMAGE
THE SYSTEM.

If You Have Additional
Disk Drives

If you have more than one disk drive, do
step 3 differently. Connect the 26-3023
Drive to the inside plug (Plug B). If you
have more 26-3023 Drives and an expanded

; cable, connect these Drives to inside plugs
% g(i);;‘nﬁf: el;,):,:(g:e{x otthe Digiclalile toithe also. The 26-3029 Drive must be connected
to the last plug in the series.

You'll also need to number your Drives.
Number them from the inside out, starting
with Drive 0. The Drive connected to Plug
B is drive number 0, the Drive connected to
Plug C is drive number 1, etc.

B. POWER IT UP

Since your Disk System has several parts, you
need to turn ON several buttons to power-up
the entire system:

« Turn ON your television set.
* Select Channel 3 or 4.

+ Set the antenna switch on the T.V. to
COMPUTER.

* Turn ON the Computer. (The power but-
ton is on the back left-hand side of your
keyboard.)

TO GET STARTED

* Turn ON the Disk Drives. (The power
buttons are on the rear.)

Have you turned ON all the buttons? This
message should appear on your screen:

DISK EXTENDED COLOR BASIC uv.r.
COPYRIGHT (C) 1881 BY TANDY
UNDER LICENSE FROM MICROSOFT

(v.r. is two numbers specifying which version
and release you have.)

If not, turn off the Computer, check your con-
nections, and power it up again.

C. INSERT A DISK

After powering the system up, you can insert
a disk. If you plan to go through Section I, use
the blank, unformatted disk which comes
with your disk system. Otherwise, you can
insert your “application program” disk. (If
you have more than one drive, insert, the disk
in drive 0).

* Open the DRIVE DOOR.

* Position the disk with the notch on top,
as we show in the picture above.

* Gently insert the disk until it stops.
+« Close the DRIVE DOOR.

Note: You cannot use a blank disk untii you "format”
it. The next chapter shows how.

Now that your system is connected and powered-
up, you're ready to begin. Begin what? Well, if you
want to know how to take full advantage of your
disk system, we’d like you to read Section I. You'll
find a lot of helpful information there.

If you're in a hurry to run your application pro-
gram, that’s O.K., too. But please read these
guidelines first. We want your disks to last a long
time.

* When storing the disk, keep it in its storage
envelope

* Do not turn the system ON or OFF with the
disk in the drive.

* Keep disks away from magnetic fields
(transformers, AC motors, magnets, TVs,
radios, etc.)

* Handle disks by the jacket only. Don’t touch
any of the exposed surfaces, even to dust
them.

* Keep disks out of direct sunlight and away
from heat.

* Avoid contamination of disks with cigarette
ashes, dust, or other particles.

* Use a felt-tipped pen only to write on the
disk label.

* Store disks upright in a vertical file.

Note: Your disk drives should be on the right side of
your television set.

IMPORTANT NOTE!
If you have an earlier model of the Color Computer, the disk system might cause
interference on your screen. If so, bring the computer to a Radio Shack Repair
Center for additional grounding connections. (There will be no charge for this

service.)

SECTION I

A disk is like a filing system. Everything on it is
organized.

This makes disks easy to work with. In this section,
we’ll show you how your Computer organizes
everything on your disk, and how you can take
advantage of this.

We invite all of you to read this section. You don’t
need to know anything about computers to under-
stand it.

.(oll-o

=
==
-]
A ——
°

MEET YOUR DISK

A LOOK INSIDE OF IT

Although your disk looks like a record, it is really
more like a multitude of tiny magnets. One disk
can hold more than a million magnetic charges.
1,290,240 of them are for your information. That’s
what we mean when we say a disk will hold
1,290,240 bits or 161,280 bytes of information
(there are eight bits in a byte).

Some of these bits are magnetically charged and
some aren’t. The pattern formed by these mag-
netic charges is what’s important. It forms a code
which the Computer can read.

With more than a million of these bits on a disk,
you can appreciate how your Computer must orga-
nize them in order to find anything. It does this by
building a massive disk filing system. First it cre-
ates the file cabinets by dividing your disk into
“tracks” Then it puts drawers in the cabinets by
dividing each track into “sectors” Then ... we're
not finished yet. ..each sector is divided into bytes
and each byte is divided into bits.

Note: To be precise, there are 35 tracks on a disk, 18
secfors in each track, 256 bytes in each sector, and 8
bits in each byle.

After creating this filing system, the Computer
puts a master directory on the disk. There, it
indexes where everything is stored. Whenever it
wants to find something — a program, a mailing
list, your letters — it uses the directory to find the
tracks and sectors where it is stored. It can then
go directly to that spot.

This whole filing system is, of course, what makes
the disk system so powerful. You can quickly find
anything you have stored on your disk.

Putting this filing system on your disk is called
“formatting” it. The last thing we had you do in
Chapter 1 was to insert an “unformatted” disk.
Before you can use it, you must format it into
tracks and sectors.

FORMATTING A DISK

How do you format a disk? Well. .. why not just tell
your Computer to do it? If you went through the

7

MEET YOUR DISK

instructions in the last chapter, you have already
powered-up your system and inserted an “unfor-
matted” disk. Be sure you have your DRIVE
DOOR closed.

Now, type any letters and press the key so
that:

0K

is the last line on your screen. (OK means “OK,
I'm ready to do something”) Now type what you
want it to do. Type:

DSKINID

and press the key. Your Computer might
print ?SN ERROR. If so, don’t let this bother you.
This “error” simply means you typed the com-
mand incorrectly. Type it again.

Whenever anything goes wrong, the Computer
will let you know immediately with an error mes-
sage. This way you can correct the error right
away. If you get any other error message besides
SN, look it up in Appendix G. It lists all the error
messages and what to do about them.

After typing DSKINI® (ENTER), you’ll hear some
noises from your disk drive and its red light will
come on. Sounds promising...

After about 40 seconds of noises, your Computer
will then print 0K. It has finished formatting the
disk. You can now store your information.

Remember that you cannot store anything on an
unformatted disk. Whenever you get a new, unfor-
matted disk, you need to format it before you can
use it.

Later on, you might not remember if a disk has
been formatted. A quick way to find out is to check
the directory. (See “Checking the Master Direc-
tory” at the end of this Chapter.) If you get an
“error message, the disk is not formatted.

Note: It does no harm to reformat a disk. This is a
common way to erase evervthing on if.

If you have more than one disk drive, you can for-
mat a disk in one of the other drives by substitut-

8

ing the appropriate drive number for drive 0. For
example, DSKINI1 formats the disk in drive 1.

PUTTING A FILE ON YOUR DISK

A disk file can contain any kind of information —
a program, a mailing list, an essay, some checks.
We’ll make your first file contain a BASIC pro-
gram, since it’s the simplest thing to store.

If you don’t know how to program in BASIC, type
this program anyway. Type each line exactly as it
is shown below. Press the key after typing
each line. Type:

10 PRINT "STORE ME IN A DISK FILE" (ENTER
20 PRINT "AND YOU'LL NEVER LOSE ME" (ENTER

Finished? Now that you’ve typed the program into
your Computer’s “memory,” you can put it on a
disk. To do this, we’ll call it a file and name the file

“SIMPLE/PRO” (all files have a name). To store it,
type:

SAVE "SIMPLE/PRO"

Once you press the key, your disk drive will
whirr and grind some and the red light on it will
come on. Your Computer is:

« finding a place on the disk to store “SIMPLE/
PRO”

» telling the directory where “SIMPLE/PRO” will
be stored.

« storing “SIMPLE/PRO” on your disk.

Note: The Computer stores "SIMPLE/PRO” the same
way it stores everything else —in a code of magnetic
charges.

At this point, we must warn you about something.
Do not remove your disk while you see the red
light on. This confuses the Computer. It might dis-
tort the contents, not only of the file you are pres-
ently storing, but of other things you have stored
on the disk.

When your Computer finishes storing “SIMPLE/
PRO; it prints the 0K message on your screen.

MEET YOUR DISK

Note: Upgrading your tape system? Note the differ-
ence: SAVE stores a program on disk; CSAVE stores
it on tape.

MEMORY VS DISK STORAGE

To those of you new to computers, we would like to
expound a little on computer “memory” If you
already know what it is, skip down to the next
heading — “Loading a File from Disk”

Whenever you type a BASIC program line and
press (ENTER), the Computer automatically puts it
in its memory. Once it’s in memory, you can do
things with it. For example, type:

RUN (ENTER
Your Computer PRINTS:

STORE ME IN A DISK FILE
AND YOU’LL NEVER LOSE ME

To list the program as you have it above, type:

LIST (ENTER

Memory is where the Computer keeps track of
everything you tell it. Once you put your infor-
mation in its memory, the Computer can print it,
rearrange it, combine it, or any of the other things
you want done with it.

Later on, you’ll probably want to put other things,
such as your mailing list, in memory. To do this,
you'll need to write or purchase a program written
especially for that application. This “application
program” will get the Computer to put the infor-
mation you type into memory.

The important thing to remember about memory
is that turning off your Computer erases it. Once
memory has been erased, there’s no way to recover
it. The only way to keep a permanent copy of what
you've typed into memory is by storing it on a disk
(or tape).

LOADING A FILE FROM DISK

Type NEW to erase everything in your Com-
puter’s memory. To make sure everything’s erased,
you can type one or both of these commands:

RUN
L1ST (ENTER)

Although NEW erased the program from memory,
“SIMPLE/PRO” is still safely stored on your disk.
You can put “SIMPLE/PRO” back into memory
anytime you want by “loading” it from disk. To do
this, type LOAD "SIMPLE/PRO" (ENTER).

Again, you’ll hear some promising noises from
your disk drive. The Computer is:

« reading the directory to find where “SIMPLE/
PRO” is stored.

» going to that location on the disk and reading the
contents of “SIMPLE/PRO”

+ putting “SIMPLE/PRO” into its memory.

You can now type one or both of these commands
to verify that “SIMPLE/PRO” is in memory:

LIST (ENTER
RUN (ENTER)
Oo

MORE ABOUT MEMORY VS DISK
STORAGE

If you're still a little fuzzy about what’s in memory
and what’s on your disk, try this exercise. You've

9

MEET YOUR DISK

just LOADed a program called “SIMPLE/PRO”
into memory, right? Change it by typing:

20 PRINT "WITH THIS CHANGE" (ENTER

LIST the program again to see that the Computer
has registered the changed line 20 in its memory:

1@ PRINT "STORE ME IN A DISK FILE"
20 PRINT "WITH THIS CHANGE"

Store it in a different file by typing SAVE
"CHANGE" (ENTER)...

Hear the whirring and grinding from your disk
drive? You have two disk files now: “SIMPLE/
PRO” and “CHANGE?” What do you think each of
them contains? Try LOADing and then LISTing
both of them.

Note: You don't need to type NEW before LOAD-
ing a new program into memory. The Computer will
automatically erase everything you presently have in
memory before LOADing the new program.

9999999999292222222929292992222929999299922229929272

“CHANGE?” contains the changed program:

1@ PRINT "STORE ME IN A DISK FILE"
2@ PRINT "WITH THIS CHANGE"

However, “SIMPLE/PRO” still contains the old
program:

1@ PRINT "STORE ME IN A DISK FILE"
20 PRINT "AND YOU'LL NEVER LOSE ME"

The only way to change a disk file is by ... well,
you answer it. How can you make the file “SIM-
PLE/PRO” contain:

19 PRINT "CHANGED FILE"

299929922929229227222222227729222222222292992927999

Answer:

Type:

10

T S T e B

NEW (ENTER
19 PRINT "CHANGED FILE" (ENTER
SAVE "SIMPLE/PRO" (ENTER

FILENAMES

You have already used one filename:
“SIMPLE/PRO”

If you did our memory vs. disk storage exercise,
you've used a second filename:

“CHANGE”

We gave the name “SIMPLE” an “extension” —
“PROJ” You must give everything you store a
name. The extension is up to you. It’s optional.

What names can you give your files? Anything
you want, as long as you follow these rules:

1. The name may have no more than eight
characters.

2. If you give it an extension, the extension may
have no more than three characters.

3. There must be a slash (/) or a period (.) between
the name and the extension.

Fair enough? Good.

Note: You may use any characters in the filename
‘except a colon () or a zero (0), You can only use a
slash (/) or a period () to separate the name from the
extension.

FILENAMES WHEN YOU HAVE
MORE THAN ONE DRIVE

If you have more than one disk drive, you can add
the drive number to your filename. (Remember,
you numbered all of your drives in Chapter 1). For
example:

LOAD "SIMPLE/PRO:1"

MEET YOUR DISK

LOADs “SIMPLE/PRO” from the disk in drive
number 1. Or

SAVE "CHANGE:1"

stores “"CHANGE” on the disk in drive number 1.
If you don’t include a drive number, the Computer
assumes you want it to use drive number 0.

CHECKING THE MASTER
DIRECTORY

As we’ve said earlier, a disk has a master directory
which the Computer can use to find out what’s on
the disk. If the Computer can use it, you can use
it, too. Type DIR (ENTER.

The Computer prints information on all the files
you have stored on your disk. If the only files
you've stored so far are “SIMPLE/PRO” and
“CHANGE; the Computer prints this:

SIMPLE PRO @ B 1
CHANGE BAS @ B 1

The first and second columns list the filename.
The first is the name and the second is the exten-
sion. Notice that even though you did not assign
“CHANGE” an extension when you stored it, the
Computer still assigned it the extension “BAS”

The Computer prefers for all filenames to have an
extension. If you do not give a file an extension
when you store it, the Computer will automati-
cally assign one of these extensions:

“BAS” if it’s a BASIC program
“DAT” if it’s data (such as names, numbers, etc.)
“BIN” if it’s a machine-language program)

Note: A machine-language program is a highly tech-
nical program which talks directly to the Computer.

The next three columns contain information
which is primarily for the use of technical pro-
grammers. Interested? Then read on...

The third column lists the type of file it is:

BASIC program

data created by a BASIC program

data created by a machine-language program
a source program created by an editor/
assembler

WN = O

Note: An editoriassembler is a program you can buy
to help you create a machine-language program.

The fourth column lists the format the file is
stored in:

A ASCII
B Binary

We’ll explain the meaning of this in Chapter 10.

The fifth column shows how many “granules” each
file consumes. “SIMPLE/PRO” and “CHANGE/
BAS” consume one granule each. (The Computer
uses “granules” to allocate file space on a disk. A
disk contains 68 of these “granules”).

If you have disks inserted and formatted in other
drives, you can check their directories also. For
instance DIR1 displays the directory of the
disk in drive number 1.

Impressed? You’ll be even more impressed when
you see how fast you can SAVE and LOAD long
programs. But before you get too involved, please
read the next chapter. It’ll help ensure that your
experience with your Disk System is smooth and
enjoyable.

Note: To stop the directory from scrolling, press the
(SHIFT) and keys simultaneously. Then press
(BREAK).

CHAPTER CHECKPOINT

1. Why can’t you store things on an unformat-
ted disk?

2. What is the disk’s directory?

3. What is a disk file?

4. What is the difference betmn what’s in
memory and what’s on the disk?

5. How do you change the contents of a disk
file?

Do you like quizzes? The answers are in
Appendix B. .

11

A GARBLED UP DISK

With more than a million magnetic charges on a
disk, you can see why it is so delicate. Any small
particle such as a piece of dust or a cigarette ash
could distort its contents. A scratch could ruin it.
That’s why we suggest that you keep the disk in
its envelope when you’re not using it— preferably
upright in a dust-free container — and only use a
felt-tipped pen when labeling it.

To help protect the disk, we encased most of it in
a black plastic container. However, as you can see,
we weren’t able to cover the entire disk. The mid-
dle section and two other small areas are exposed
so the Computer can read and write to it. Be care-
ful not to touch the exposed areas, not even to dust
them. They scratch very easily.

Since the disk is made up of magnetic charges,
putting it next to another magnetic device, such as
your television set, could completely rearrange its
magnetic code. Your information would be lost.
Heat and sunlight could have the same effect. The
same goes for turning your Computer ON or OFF
while the disk is in its drive.

One more thing ... If you're in the middle of run-
ning a disk program, and need to switch disks, we
recommend that you type this command:

UNLGAD

before you switch disks. This way the Computer
can put its closing information on the proper disk.
If you don’t type this command, the Computer
might put this information on the wrong disk and
garble the contents of both disks.

Note for BASIC programmers: All open files must
be closed before switching disks. UNLOAD closes all
‘open files.

BACKIT UP

All of this might sound a little gloomy to you, even
if you are a careful person. This is why we’ve
included a command called BACKUP. BACKUP
will enable you to make a duplicate or “backup”
copy of any of your disks by copying the contents
of one disk to another.

13

A GARBLED UP DISK

L e 1 e

We suggest you regularly make a backup copy of
any disk which contains important programs or
data. This way you won’t have to worry about los-
ing them.

Also, since a disk can actually get worn out from
too much use, it’'s a good idea to make a backup
copy of an old disk on a new, unused disk. Then,
when the Computer begins having its problems
reading and writing to the disk, you can use your
backup copy.

Want to make a backup copy? Get your two disks
ready:

1. Your “source” disk — This is the disk you want
to duplicate. Use any disk which has files stored
on it. If you're just getting started, use the disk
which you worked with in Chapter 2.

2. Your “destination” disk—This is the disk which
you want to be your duplicate copy. Use a blank
disk or, if you've been using your disk system
for a while, use any disk which contains files
you won’t need anymore.

Note: Everything previously on your destination disk
will be erased. It will be replaced with all the data on
vour source disk.

If your “destination” disk is blank, you must
first format it. Remember how? Insert it in your
disk drive, shut the door, and type DSKINIO
(ENTER).

Now make the backup copy. The procedure you fol-
low depends on whether you have one disk drive
or several.

Backup with One Disk Drive

If you have only one disk drive, it will take you
about five minutes to make a backup copy. Insert
your “source” disk in your disk drive and shut the
DRIVE DOOR. Type DIR to see which files
you will be copying.

Now start the backup procedures. Type:

BACKUP @ (ENTER

14

After making some noise while it reads a portion
of your “source” disk, the Computer will print:

INSERT DESTINATION DISKETTE AND PRESS (ENTER

Take the “source” disk out and insert the “desti-
nation” disk. Shut the DRIVE DOOR. Then press
(ENTER). You’'ll hear some more noise while the
Computer “writes” some things on the “destina-
tion” disk. Then it will print:

INSERT SOURCE DISKETTE AND PRESS (ENTER)

The Computer will have you continue switching
disks until you have copied everything from your
source disk. During this process, make sure you
insert the correct disk and insert it properly. When
you've finished, the Computer will print the OK
message on your screen.

To make sure BACKUP worked, you can insert
your “destination” disk and type DIR (ENTER).

Backup with More Than One Disk
Drive

If you have more than one disk drive, backing up
a disk is much easier. It will take about two
minutes.

Insert your “source” disk in drive 0 and your “des-
tination” disk in drive 1 (Chapter 1 shows how to
label your drives). Then type:

BACKUP @ TO 1 (ENTER)

You will hear some noise as the Computer backs
up the contents of the disk in drive 0 to the disk in
drive 1. When it’s finished, it will print the 0k mes-
sage. You can then make sure BACKUP worked
by typing DIR! (ENTER).

You can use different drives, if you want. For
instance:

BACKUP 1 To @ (ENTER)

backs up the contents of the disk in drive 1 to the
one in drive 0.

A GARBLED UP DISK

I L e T

If You have Problems During
Backup

If you get an error message while you’re backing
up a disk, it’s probably because you've inserted the
disk incorrectly or there is something wrong with
the disk. At the end of this chapter, we discuss
error messages to help you determine the prob-
lem. If you have a bad disk, you will need to try
BACKUP with another disk.

After determining the problem, press the RESET
button to get out of BACKUP. Then start the
BACKUP procedure all over again.

Note: The RESET button is on the right-hand rear
of your Computer (when you're facing it).

“WRITE” PROTECT IT

“Write-protecting” is one more way to protect your
disk files. Let’s assume you have a disk which con-
tains some valuable information — such as a good
program — which you don’t plan to change. You
plan to “read” its contents daily, by loading the
program into memory, yet you never plan to
“write” (store information) on it.

Putting a little gummed label on the WRITE-
PROTECT NOTCH will enable the Computer to
read the disk, but not to write on it. Any gummed
label will do. There is one which comes with your
new, unformatted disk:

R L L e

SALVAGE IT

We mentioned earlier that a disk doesn’t live for-
ever. Before you throw away an old disk, though,
see if you can salvage it. You may be able to do this

by formatting it all over again as if it were a blank
disk.

Although this might salvage the disk, it will not
salvage the contents of the disk. By reformatting
the disk, you will erase everything on it. However,

it will save you the expense of purchasing a new
disk.

If you get an IO error while trying to reformat it
(see “Error Messages” at the end of this chapter),
the disk has probably reached its limit. If you have
a “bulk-eraser)” you can try “bulk-erasing” the
disk and reformatting it. Otherwise, throw it
away and use another one.

Note:Ifyou have more than one disk drive, you might
be able to COPY some of the files on a bad disk to a
good disk. We discuss COPY in the next chapter.

VERIFY IT

The Computer “writes” data on your disk at a very
fast speed. In almost all cases, it can do this
flawlessly.

There might be times when you want to be abso-
lutely certain that there are no flaws in what the
Computer is writing. If so, you can turn ON the
Computer’s VERIFY command. To do this, type:

VERIFY ON (ENTER)

Now the Computer will notify you, whenever it is
writing on a disk, if there are any flaws in what it
is writing. The only catch is that it will take twice
as long for the Computer to write.

For example, let’s assume you now make a
BACKUP copy of your disk. The Computer will
take twice as long doing this, but will notify you
if there is a flaw in the BACKUP copy.

This VERIFY command will remain ON until you
turn it off. To do this, type:

VERIFY OFF (ENTER)

15

A GARBLED UP DISK

WHEN THINGS GO WRONG

Your Computer realizes nobody’s perfect. When
you make a mistake, it'll try to notify you imme-
diately and tell you what kind of “error” you
made.

You’ve probably already been notified that you
made a “SN ERROR. If you haven’t, type DIIR
deliberately mispelling DIR.

SN means “Syntax” error. It’s the Computer’s way
of telling you that “DIIR” doesn’t make sense to it.
The word is not in its vocabulary. An SN error
usually means you made a typographical error.

Here are some other error messages you're likely
to get with your disk system:

AE — You are trying to RENAME a file (discussed
in the next chapter) to a filename which
Already Exists.

DF —The Disk you are trying to store your file on
is Full. Use another disk.

DN — You are using a Drive Number higher than
3. You will also get this error if you do not
specify a drive number when using DSKINI
or BACKUP. If you have only one drive
specify drive 0 with these two commands
(DSKINIO or BACKUP 0)

FN — You used an unacceptable format to name
your file. The last Chapter explains which
File Names are acceptable to the Computer.

Fs —There is something wrong with your disk
file. See 10 for instructions on what to do.

/@ — Technically, this means you have asked the
Computer to divide a number by 0, which is
impossible. However, you might also get
this error when you don’t enclose a filename
in quotation marks.

16

10 —The Computer is having trouble Inputting
or Outputting information to the disk.

(1) Make sure there is a disk inserted
properly in the indicated drive and the
drive door is closed.

(2) If you still get this error, there might
be something wrong with your disk.
Try reinserting the disk first. Then try
using a different one or reformatting
it. (Remember that reformatting a
disk erases its contents.)

(3) If you still get this error, you probably
have a problem with the Computer
System itself. Call the Radio Shack
Repair Center.

NE —The Computer can’t find the disk file you
want. Check the disk’s directory to see if the
file is there. If you have more than one disk
drive, you might not have included the
appropriate drive number in the filename. If
you are using COPY, KILL, or RENAME
(discussed in the next chapter), you might
have left off the extension.

™M — Technically this is caused by a program
which mixes “strings” with “numbers”
However, you might get this error if you
don’t enclose a filename in quotation marks.

UF — You will only get the error when you have
the VERIFY command ON and are writing
to a disk. The Computer is informing you
that there is a flaw in what it wrote. See 10
for instructions on what to do.

WP — You are trying to store information on a disk
which is Write Protected. Either take the
label off the write protect notch or use a dif-
ferent disk. If your disk is not Write Pro-
tected, then there is an input/output prob-
lem. See IO for instructions on what to do
about this.

All other errors you might get are errors in the
program you are using. If you did not write the
program and get one of these errors, you need to
contact the people who wrote it. If you did write it,
check Appendix G, where you’ll find an explana-
tion of all the error messages.

A GARBLED UP DISK

T are ——— e e T T e e AT

Caring for your disk might seem a little awkward
at first. It should. You've spent most of your life
protecting your papers and now you're dealing
with a different medium.

After awhile, though, protecting your disk from
dust and magnetic devices will seem as natural to
you as protecting your papers from a strong gust
of wind. And once you get used to keeping your
disk “ungarbled;” you’ll never want to go back to
pencils and paper again (we hope).

CHAPTER CHECKPOINT

1. Why shouldn’t you turn the Computer ON
or OFF while the disk is in its drive?

2. What type of pen can you use to write on
the disk’s label?

3. What are error messages?

4. What does write-protect mean? How do

youdoit?

wﬂ&-ﬁiu backup a disk?

17

YOU’RE THE BOSS

Thanks to your disk filing system, you are able to
command the Computer to do a lot of very helpful
things. For example, you can rename a file. If
you've taken your formatted disk out, re-insert it.

ng DIR ENTER) (or DIRA or
than one drive).

Type this to put a file on your disk:

1@ PRINT "THIS IS A FILE" (ENTER
SAVE "ORIGINAL/NAM" (ENTER

Check the directory to see that the program file is
stored on your disk under the name “ORIGINAL/
NAM”...Now rename it. Type:

RENAME "ORIGINAL/NAM" TO "MEW/NAM" (ENTER

Hear the disk drive working? Check your DIRec-
tory again. If you'd like, LOAD and LIST “NEW/
NAM? The program file has simply been renamed.
Everything else is the same.

RENAME is easy to use, but there is one thing you
need to remember. Save a file without an exten-
sion and then try to rename it. Type:

1@ PRINT "FILE NUMBER TWO" (ENTER
SAVE "AFILE"
RENAME "AFILE" TO "BFILE"

The Computer gives you an NE error. This means
the Computer can’t find the file.

When you RENAME a file, you must type in the
complete name of the file so that the Computer can
find it. This includes the name and the extension.
As we discussed in Chapter 2, whenever you SAVE
a file the Computer will make sure it has an exten-
sion. If you don’t assign it one, the Computer will.

You can check the directory to find out the exten-
sion of “AFILE” Then RENAME it. Type:

RENAME "AFILE/BAS" TO "BFILE/BAS" (ENTER

If you're renaming a program file, be sure that
your new filename has an extension. In other

19

YOU'RE THE BOSS

words, don’t type RENAME "AFILE/BAS" TO "BFILE"
(ENTER). The Computer would RENAME the file,
however “BFILE” would not have an extension.

This would cause a problem when you try to
LOAD “BFILE, since all files you LOAD must
have an extension.

This might seem to conflict with what we said
above. You were able to SAVE “AFILE” without
assigning it an extension because the Computer
automatically assigned it one when it saved it.
RENAME works differently. The Computer won’t
automatically assign an extension to a program
you rename.

Note: There is one way to LOAD "BFILE” without an
extension. This is by indicating that there is no exten-
sion by typing LOAD "BFILE/" (ENTER. This is awk-
ward. That's why we suggest, when renaming a file,
you always assign it an extension.

Multi-Disk Drives

You can RENAME a file on another disk drive,
simply by typing the appropriate drive number.
Insert a formatted disk in drive 1 (if it’s not
already inserted). Store a file on it:

19 PRINT "ACCOUNTING" (ENTER
SAVE "OLDACC/DAT:1" (ENTER

and RENAME it by typing:

RENAME "OLDACC/DAT:1" TO "NEWACC/DAT:L"
ENTER

Note: If you want your renamed file on a different
drive, you can’t use RENAME. Use COPY.

ALMOST OUT OF DISK SPACE?

Sooner or later, you'll want to know how much
space you have left on your disk. Type:

PRINT FREE(@) (ENTER

The Computer prints the number of FREE “gran-
ules” remaining on your disk.

There are 68 granules in all. If the Computer tells
you that you have only one granule FREE, you'd

20

better do one of the following: start using another
disk or “KILL” some of your disk files.

KILLing a disk file does just what the name
implies. For example, if you put “CHANGE” on
your disk in Chapter 2, type:

KILL "CHANGE/BAS" (ENTER

Check your directory and the FREE space remain-
ing on your disk. “CHANGE/BAS” is no longer on
your disk. The space it occupied is now FREE for
new files.

Notice, we had to include CHANGE’s extension,
“BAS) in order to KILL it. The Computer insists
you type the complete filename as one extra pre-
caution. It doesn’t want to KILL a file you don’t
want destroyed.

Note: Want to get very technical? The data will still
exist on the disk after you KILL a file. However, the
Computer won't know if's there because KILL deletes
all reference to it in the disk’s directory. Therefore,
you'll no longer be able to access the data and the
Computer will be able to write over it with a new file.

Multi-Disk Drives

You can use FREE and KILL on other disk drives,
as you can with RENAME, by typing the drive
number. Examples:

PRINT FREE(1) (ENTER)

tells you how much FREE space is on the disk in
drive 1.

KILL "NEWACC/DAT:1" (ENTER

deletes "NEWACC/DAT” from the disk in drive 1.

SPECIAL MULTI-DRIVE
COMMANDS

In the rest of this chapter, we’ll talk about two
commands which you can use if you have a multi-
drive system. If you don’t have one, go on to
“Chapter Checkpoint” at the end of this chapter.

YOU'RE THE BOSS

The first one copies a disk file. You should, at this
point, have a program file stored in the disk in
drive 0 named “NEW/NAM?” Make a COPY of it.

Type:
COPY "NEW/NAM:@" TO "NEW/NAM:1" (ENTER).

If you want, you can rename the file when you
copy it. For instance, COPY "NEW/NAM:1" TO
"ANOTHER/NAM:@" (ENTER) copies “NEW/NAM”
from the disk in drive 1 to the file “ANOTHER/
NAM?” on the disk in drive 0.

The second command changes the drive number
the Computer goes to if you do not specify one. Up
to now, this has been drive 0. For example, by typ-
ing SAVE "ANYTHING/EX" (ENTER), the Computer
will assume you want to use drive 0. It will then
SAVE this program on the disk in drive 0.

To change this assumption, you can type:

DRIVE 1 (ENTER

This makes the Computer assume you want it to
use DRIVE 1, unless you tell it otherwise.

After changing this DRIVE assumption, the Com-
puter will respond differently to the same com-
mand. By typing SAVE "ANYTHING/EX" (ENTER), the
Computer will store “ANYTHING/EX” on the
disk in drive 1. You would now need to type SAVE
"ANYTHING/EX:0" to SAVE it in drive 0.

drive Wﬂf the Computer use? How c can jrou ;
cbange this? ; : s

Congratulations. You are now a bonafide disk sys-
tem operator. You should now have a good under-
standing of how your disk system works and how
to take full advantage of it.

21

SECTION II
DISK PROGRAM

Storing a BASIC program is easy. You only need to
use the SAVE command. Storing data takes a little
more effort. You need a program.

Some of you might prefer to buy a ready-made pro-
gram. However, if you want more control and are
willing to invest a little time, you will enjoy writing
your own.

In this section, we'll show you how to write a BASIC
program which stores data on disk. We are assum-
ing you already know some BASIC. If you don't,
read Section I of Getting Started with Color BASIC.
It will give you all the background you need.

23

L] L]

L

ONE THING AT A TIME
(Sequential Access to a File)

A tape is simple. There’s only one way to put data
on it and one way to read it off. A disk is more com-
plex. There are several ways to “file” your data on
it.

In this chapter and the next, we’ll show how to
write a program which stores data in a “sequential
access” disk file. It’s the simplest file to create and
is actually very similar to a tape “file’” In Chapter
7, we'll introduce “direct access,” an alternate type
of disk file.

In showing how to store things on disk, we’ll fre-
quently use the words disk file and disk directory.
We discussed these concepts in Chapter 2, but we’ll
summarize them now.

Everything you store on disk must go in a disk file
and be assigned a filename. Your Computer will
index the location of the disk file in the disk’s
directory. For example, if you want to store the
names of your friends, you could put them in a
disk file named “FRIENDS? Your disk’s directory

would then index where, on the disk, “FRIENDS”
is stored.

There is, of course, a good reason for all of this.
Using the disk filing system, the Computer will be
able to immediately find any file on the disk.

WRITING A DISK FILE

Let’s assume you want to “write” your checks on
the disk:

CHECKS

DR. HORN
SAFEWAY

FIRST CHRISTIAN
OFFICE SUPPLY

We’ll start with a short, simple program which
writes the first check, “DR. HORN? on the disk.
Insert a formatted disk in your disk drive. (If you
have more than one disk drive, use drive 0.)

25

ONE THING AT A TIME

e T e x - T

Note: Chapter 2 shows how to format a disk. (Type
DIR (ENTER) if you can’t remember whether a disk is for-
matted.) Chapter 1 explains the drive numbers.

Then type:

1@ OPEN "0", #1, "CHECKS/DAT"
Z0 WRITE #1,4 "DR. HORN"
3@ CLOSE #1

RUN the program. You’ll hear the motor of the
disk drive and see the red light. The Computer is
at work doing several tasks.

First, it OPENs communication to the disk so you
can send your checks out to it. Then, it finds an
empty location to store the checks and notes the
beginning location of that disk file in the directory.

All of this happens in line 10. Notice the meaning
of the “O”, #1, and “CHECKS/DAT”:

1. #1 is a special “buffer” area in memory called
buffer #1. It communicates with the disk drive.
Line 10 OPENSs this buffer. (If you’ve been
using tape, you might remember that buffer
— 1 communicates with the tape recorder.)

2. “0” is the letter “O) not a zero. It stands for out-
put. It tells the Computer that buffer #1 will be
sending out data to the disk.

3. “CHECKS/DAT” is the name of the disk file.
The disk’s directory uses this name to index its
beginning and ending locations.

In line 20, the Computer sends out the words “DR.
HORN?” to buffer #1 which WRITEs it on the disk.

Then, in line 30, the Computer CLOSEs commu-
nication with buffer #1. In doing this, it:
» sends out all the data remaining in buffer #1
to the disk file.
* notes in the disk’s directory where “CHECKS/
DAT” ends.

Note: A buffer temporarily stores data so the Com-
puter can input and output data to the disk in blocks of
249 characters (bytes). Since buffer #1 only contains 8
characters ("DR. HORN"), they would not be sent out
to the disk without closing the file.

26

i o R SOt AP e AT o ama e

It is very important that you CLOSE communi-
cation with buffer #1. Why? Well, let’s leave
buffer #1 OPEN. Delete line 30 and RUN the pro-

gram several times.

The program appears to work the same every time
you RUN it. This is because every time you RUN
(or LOAD) a program, the Computer will auto-
matically CLOSE communication with any buff-
ers you've left OPENed.

Now, let’s assume you switch disks and RUN or
LOAD a program. The Computer will automati-
cally CLOSE communication with buffer #1. In
doing this, it will send out its closing information
to the new disk (thinking it’s the old one). This
will very possibly garble the contents of both
disks.

Now that we've warned you of the importance of
line 30, re-insert this line in your program and
RUN it again. This is what the program writes on

your disk:
C,yé.?‘s

M»
‘CH E”éﬁsl 9.

SDRG HORN"

Note: Like our drawing of the disk? The entire
“"CHECKSI/DAT?” file consists of the words "DR.
HORN'? The disk’s directory notes the beginning and
ending locations of this file.

You can verify that the Computer has done this by
checking the disk’s directory. You remember how
to do that. (Type DIR (ENTER)

Because this program sends your data out to the
disk file, we’ll call it an output program.

READING THE DISK FILE

To get the Computer to read this data from the
disk back into its memory, you need an input pro-
gram. Erase the output program you now have in

ONE THING AT A TIME

memory by typing NEW (ENTER). Then type and RUN
this input program:

100 OPEN "I", #1, "CHECKS/DAT"
110 INPUT #1, A%

120 PRINT A%

130 CLOSE #1

This is actually just the reverse of the output
program. ..

Line 100 again OPENs communication to buffer
#1. This time communication is OPEN for “I” —
input. The Computer goes to the disk’s directory to
find where to start inputting the file named
“CHECKS/DAT?”

In line 110, the Computer INPUTSs the first data
item from the disk file named “CHECKS/DAT”
and labels it A$. Line 120 PRINTSs A$.

Finally, line 130 CLOSEs communication to
buffer #1. In doing this, the Computer inputs any
data remaining in the buffer.

Note: You can compare an input program to the
LOAD command. An input program inputs a data
file; LOAD inputs a program file.

ONE CHECK AT A TIME

At this point, we’ve used an output program and
an input program. Let’s combine them into one

program. Type:

1@ OPEN "O", #1, "CHECKS/DAT"
Z@0 WRITE #1, "DR. HORN"

30 CLOSE #=1

10@ OPEN "I", %1, "CHECKS/DAT"
11@ INPUT #1, A$

120 PRINT A%

130 CLOSE #1

Now add these lines and RUN the program:

25 WRITE #1, "SAFEWAY"
115 INPUT #1, B%
120 PRINT A$.: B%

Lines 10-30 output two checks into your disk file:

Wf " “64’56%10,, "

"DR, HORN:" "SAFEWAY"

Lines 100-130 input them. Try to input more than
two checks. Change line 115 and 120:

115 PRINT A%
120 GOTO 110

and RUN the program ... The Computer prints:
7IE ERROR IN 110

The Computer is notifying you that you are asking
it to input more checks than are in the file.
Technically, the IE error means you've attempted
to Input past the End of the File.

This error makes things difficult when you want
to input all the data, but you don’t know how
much is in the file. We showed you this error so
you would appreciate our new word — EOF. Type:

185 IF EOF(1) = -1 THEN 130
120 GOTO 1@5

and RUN ... EOF checks to see if you've reached
the end of buffer #1 (the number in parentheses).
If you have, EOF(1) equals a —1. If you haven’t,
EOF equals 0.

27

ONE THING AT A TIME

By adding line 105 to the program, the Computer
checks to see if you've reached the End before
inputting the next check. If you have, line 130 clo-
ses communication to the file.

DETAILS...

So far, “CHECKS/DAT” has been easy to handle,
but not very useful. You would probably like to
add more details:

CHECKS
PAYABLE TO AMOUNT EXPENSE
DR. HORN 45.78 MEDICAL
SAFEWAY 22.50 FOOD
FIRST CHRISTIAN 20.00 CONTRIB.
OFFICE SUPPLY 13.67 BUSINESS

Change lines 25 and 115, and add some lines by
typing:

25 WRITE #1, 45,78

27 WRITE #1, "MEDICAL"
11@ INPUT #1, A%, B, C%
115 PRINT A%y B+ C%

LIST the program. This is the way it should look
now:

1@ OPEN "O", #1, "CHECKS/DAT"
20 WRITE #1, "DR., HORN"

25 WRITE #1., 45,78

27 WRITE #1, "MEDICAL"

30 CLOSE #1
18@ OPEN "I", #1, "CHECKS/DAT"
185 IF EOF(1) = -1 THEN 130

11@ INPUT #1., A%, B, C$%
115 PRINT A%, B» C%

120 GOTO 105

130 CLOSE #1

Now RUN it.

A GOOD TIGHT PROGRAM

What if you need to store a whole list of checks?
Continue to plod along with this program, and it’ll
soon be unbearable.

28

Here, we have a tight program which asks you to
INPUT all your data, stores it on disk, and reads
it back into memory. Erase memory and type:

5 CLS

1@ OPEN "G", #1, “"CHECKS/DAT™"

2@ INPUT "CHECK PAYABLE TO :"3 A%

3@ IF A% = "" THEN 80

4@ INPUT "AMOUNT : $"35 B

5@ INPUT "EXPENSE :"§ C%

6@ WRITE #1, A%$: B+ C%

70 GOTO 20

B@ CLOSE #1

9@ CLS

10@ PRINT "YOQUR CHECKS ARE STORED ON DISK™"
11@ INPUT "PRESS <ENTER> TO READ THEM": A%
120 OPEN "I", #1, "CHECKS/DAT"

130 IF EOF(1) = -1 THEN 170

148 INPUT #1, A%, B+ C%

15@ PRINT A%$5 B3 C%

160 GOTO 130

17@ CLOSE #1

RUN it. Input any checks. When you want to quit,
simply press in answer to the CHECK PAY-
ABLE TO : prompt. For example:

CHECK PAYABLE TO :%? GOODY BANK

AMOUNT :%7 Z30.97 (ENTER
EXPENSE :7? CAR (ENTER

CHECK PAYABLE TO :7 (ENTER

YOUR CHECKS ARE STORED ON DISK
PRESS <ENTER» TO READ THEM? (ENTER
GOODY BANK 230.97 CAR

The answers to all the “Programming Exercises”
are in Appendix A.

(1 CHAPTER CHECKP INT

1. Whatis a buffer #17
2. Why must you OPEN a disk ﬂle?
3. Why must you CLOSE it?
4. What is the dzﬁe.remesbatm a ﬁl;e QPEN
for input and output?

Try saving many different graphics
programs on disk and calling them
from one main program. Sample
Program 7 in Appendix C shows
how.

You can quickly store, organize, and
update all your financial information with
a disk system. See Sample Program 1, 2,
and 8 in Appendix C for program listings.

CHANGING IT ALL AROUND
(Updating a Sequential Access File)

Everything you put on the disk and take off of it
goes through a spot in memory called a buffer.
When we told you how to put data on tape in Get-
ting Started With Color BASIC, we didn’t talk
about these buffers. We didn’t need to. There is
only one buffer which communicates with the tape
recorder — buffer # — 1.

With your disk system, you can use up to 15 buff-
ers. This means you can have up to 15 spots in
memory communicating with 15 different disk
files at the same time.

The reason we brought this subject up is that we
want to demonstrate how to change some of the
data in your file. To do this, it is very helpful to use
two buffers.

Note: In Chapter 10, we’ll demonsirate how to take
advantage of more of these buffers.

Type this program:

10 OQPEN "O", #1, "ANIMALS/DAT"
20 WRITE #1, "HORSE"

30 WRITE =1, "COMW"

4@ CLOSE =1

RUN it. Now, let’s assume you want to change
“COW” to “GIRAFFE? First, you need to read the
data items into memory with an input program.
Erase memory. Type NEW and then type:

1@ OPEN "I", #1, "ANIMALS/DAT"

20 IF EOF(1) = -1 THEN 110
30 INPUT #1, A%
4@ CLS : PRINT @ 1@6: "DATA ITEM :" A%}

100 GOTO 20
11@ CLOSE #1

Then you need to add lines which will allow you to
change one of these data items and store the
change in the disk file. Type:

58 PRINT B 4514 "PRESS <ENTER> IF NO
CHANGE" 3

E@ PRINT B 2B3: "CHANGE :"j

7@ INPUT k¢

29

CHANGING IT ALL AROUND

B0 IF X% = "" THEN X% = A%
90 WRITE #1, X%

RUN the program. As soon as the Computer gets
to line 90, it prints:

TFM ERROR IN 90

LIST the program. Line 10 opens buffer #1 to
input data. Line 90, however, is attempting to out-
put data to buffer #1. The Computer won’t output
data to a buffer opened for input.

This is where the additional buffer becomes
handy. To output your changed data to the disk,
you can open another buffer for output. Add these
lines:

15 OPEN "O", =2, "NEW/DAT"
90 WRITE #2, X%
120 CLOSE =2

RUN the program. Change “COW” to “GIRAFFE”
This is the way the entire program looks:

1@ OPEN "I", #1, "ANIMALS/DAT"
15 OPEN "O", #2, "NEW/DAT"

20 IF EOF(1) = -1 THEN 110
3@ INPUT #1, A%
4@ CLS : PRINT @ 186, "DATA ITEM :" A%;

50 PRINT B 451 "PRESS <ENTER> IF NO
CHANGE" 3

60 PRINT B 263 "CHANGE :";

70 INPUT X%
B@ IF X% = "" THEN X$=A$%
98 WRITE #2, X%

1@ GOTO 20

11@ CLOSE #1

120 CLOSE =2

Line 10 OPENs communication to buffer #1 for
input from a disk file named “"ANIMALS/DAT?”
Line 15 OPENs communication to buffer #2 for
output to a disk file named “NEW/DAT”

Line 30 inputs A$ from buffer #1. Line 70 allows
you to INPUT X$, which will replace A$. If you
input X$, line 90 outputs it. Line 90 outputs X$ to
buffer #2, which, in turn, WRITEs it to “NEW/
DAT?

30

Line 110 CLOSEs communication to buffer #1
and line 120 CLOSEs communication to #2.

Now you have two files. “ANIMALS/DAT” con-
tains the old data and “NEW/DAT” contains the
new. Add these lines to the program and RUN it:

130 KILL "ANIMALS/DAT"
140 RENAME "NEW/DAT" TO "ANIMALS/DAT"

Now the old “ANIMALS/DAT?” file is deleted from
the disk and the “NEW/DAT?” file has been
renamed to “ANIMALS/DAT?” To see what this
updated file contains, SAVE this program if you
want, erase memory, and type and RUN:

i@ OPEN "I", #1, "ANIMALS/DAT"
20 IF EOF(1) = -1 THEN GO

30 INPUT #1, A%

4@ PRINT A%

o@ GOTO 20

6@ CLOSE #1

Understand? Try these exercises:
PROGRAMMING EXERCISE #6.1

Write a program which will allow
you to add animals to “ANIMALS/
DAT”

Hint — You must add them to the
end of the file. '

PROGRAMMING EXERCISE #6.2

Write a program which will allow
you to delete animals from “ANI-
MALS/DAT” '

Ready for the big time? Our next exercise is a pro-
gram many of you will want— a mailing list pro-
gram. We'll start you out with these lines which
input the names, addresses, and phone numbers of
your club members:

CHANGING IT ALL AOUND

8@ OPEN "0O", %1, "MEMBERS/DAT"

90 GOSUB 430

188 IF N$="" THEN CLOSE#1:END

118 WRITE #1, N%, A%, P$

128 GOTO 9@

438 CLS: PRINT "PRESS <ENTER> WHEN
FINISHED" :PRINT

448 INPUT "NAME OF MEMBER:"iN$%

438 IF N$="" THEN 48B0

46@ INPUT "ADDRESS :"i A%

47@ INPUT "PHONE NUMBER :"35 P%

480 RETURN

Now finish it by solving this Programming Exer-
cise. It'll be difficult, but we think you can do it.
Remember, no one’s watching. If you get bogged
down, refer to the answer in Appendix A for help.

All of this works quite well on a small scale, but
how would it work in a large file? What if you had
500 members in your “MEMBERS/DAT” file and
you wanted to change only the address of the
453rd member?

The process would still be the same. You would
have to input each of the 500 members from one
file and then output them all to another file. All of
this just to change one record. There must be an
easier way!

The easier way is called the direct access method
of programming. It makes your files easier and
faster to update, but in many cases it will make
them take up more space in your disk. The choice
is yours. We’ll talk about direct access in the next
chapter.

31

INFORMATION

DISK FILE
STORAGE AREA

NO APMTANCE WITHOWT NUMRER

T

A MORE DIRECT APPROACH
(Direct Access to a File)

Up to now, we haven’t been concerned with how
your data is stored on the disk. For example, you
might have put this in a disk file:

Aegummnirly

‘W}M?;/ DAT"

"MARIE ALEXANDER." "J. DO
E+" “MARK) JONEG " “"BILL:-§
MITH"

_md., og, "WAMES/DAT

What if you want to change “J. DOE,’ to
“ELLIOTT HOBBS”? You could not ask the Com-
puter to go directly to “J. DOE” The Computer
does not know where it is.

All the files we’ve created so far have been
“sequential access” To find a particular item in a

sequential access file, the Computer must start at
the beginning and search through each item. It
can’t go directly to the item. In short, a sequential
access file does not take full advantage of your
disk’s “filing system”

USING THE DISK FILING SYSTEM

In Chapter 2 we talked about how formatting your
disk creates this filing system. In our analogy, the
file cabinets are the disk “tracks” and the file
drawers are the disk “sectors.” You can use tracks
and sectors to immediately find any item you
want.

To do this, you can divide your file into something
which we call “records”” You can then write a pro-
gram which stores each record in a sector and
allows you to put data in the records. The next
page shows how your new disk file will look:

33

W of "NAMES/DAT "

A MORE DIRECT APPROACH

"MARIE ALEXANDER"

record 1

‘s OB

record 2

"MARK JONES"

record 3

CBILCE SHLIEHY

record 4

wrol of 'WAMES/DAT

With each record the same length (the length of a
sector), the Computer can go directly to “J. DOE”
All it has to do is count down to the second record.

We call this a “direct access” file. By direct access,
we mean you can directly access any record you
want in the file.

A direct access file has one shortcoming. Each
record is the size of a sector— 256 bytes. Since one
of these bytes holds one character of data, each
record is large enough to hold 256 characters.

This means that our drawing above is a little mis-
leading. If we illustrated all the empty space in
each record, they would each have to be nearly ten
times as long. We simply don’t have enough room
on the page.

If you're a beginner, all this empty space probably
won’t bother you. An empty disk can hold up to
612 records—each 256 bytes long. Later on, when
you become more comfortable with programming,
you’ll probably want to pack more records into a
disk file. You can then progress to Chapter 9,
where we will demonstrate how to make smaller
records.

34

PUTTING A RECORD ON DISK

Enough theory! Let’s put one record in a disk file.
Since it’ll be a direct access file, we don’t have to
start with the first. We'll start with the second.
Erase memory and type:

1@ OPEN "D"» #1, "NAMES/DAT"
20 WRITE #1, "J. DOE"

30 PUT =1, 2

4@ CLOSE #1

The program looks familiar. .. except for the word
PUT in line 30 and the “D” in line 10. More on that
later. ..

Now let’s add some lines so the Computer will
read this record back into its main memory. Type:

34 GET #1, 2
36 INPUT #1, A%
38 PRINT A%

Note that line 34 uses another new word — GET.
Hmmm ... any ideas? Let’s look at the entire
program:

1@ OPEN "D",» #1, "NAMES/DAT"
20 WRITE #1, "J. DOE"

30 PUT #1, 2

34 GET #1, 2

36 INPUT #1, A%

38 PRINT A%

4@ CLOSE =1

RUN it...You’ll hear the now familiar sound from
your disk drive. The Computer is writing “J.
DOE?” in the disk file and then reading it back into
memory. Here’s how. ..

Line 10 OPENs buffer #1 which will communi-
cate with a disk file named “NAMES/DAT. As we
said in the last two chapters, buffer #1 is one of
the 15 “buffer” areas which can communicate with
your disk.

Communication is being OPENed for “D” “D”
stands for direct access. Unlike sequential access,
you don’t have to specify whether you're OPENing

s T T Al T 1 AT A AR Sl A Rt T s e

communication for output or input. The “D” suf-
fices for both.

Line 20 WRITEs “J. DOE” to buffer #1. Since this
program is open for direct access, “J. DOE” will
remain in buffer #1 until the program sends it
elsewhere.

Line 30 does just that. It PUTs the contents of
buffer #1 into the disk file as record 2:

e

“NAME /DAT”
&L

record 1

S r=haE"D
record 2

%

ond
“/VAMOEJS/DAT ”

At this point, “J. DOE” is no longer in buffer #1.
It is in record 2 of the disk file.

Line 34 GETs record 2 and reads it back into
buffer #1. Now “J. DOE” is in both the disk file
and buffer #1.

Line 36 INPUTSs the record from buffer #1 into
main memory and labels it A$. Now “J. DOE” is
in both the disk file and main memory. It is no
longer in buffer #1.

With “J. DOE” in main memory, line 38 can
PRINT it.

Note: In the sequential access programs in Chapters
5 and 6, you didn't need PUT and GET. The Com-
puter did this automatically. The OPEN line specified
whether the buffer should output (PUT) data into the
disk file or input (GET) data from the disk file.

A MORE DIRECT APPROACH

Notice our drawing shows only two records in the
file. GET record 4. Type:

34 GET #1, 4

and RUN...The Computer gives you an IE (Input
past the End of the File) error. This is because the
last record the program PUT in the file was record
number 2. Hence, record 2 became the end of the
file.

Note: Didn't get this error? You must already have a
"NAMESIDAT? file on your disk with three or more
records.

To PUT more records in the file, add these lines.
Then RUN the program:

31 WRITE =1, "BILL SMITH"

32 PUT #1, 4

Now your “NAMES/DAT” file will have these four
records:

“/VﬁMg/DA 7
v

record 1

fda BOEY

record 2

record 3

rBIEEENEEHY

record 4

A

”

“WAMES/DAT

35

A MORE DIRECT APPROACH

DEALING WITH GARBAGE

You have not yet PUT anything in record 1. Ask
the Computer to GET record 1 and see what hap-
pens. Type this and RUN:

34 GET #1., 1

Since the Computer didn’t PUT anything in
record 1, record 1 contains whatever “garbage” is
already there.

When you ask the Computer to GET and INPUT
it, it will either get the “garbage” or give you an
OS (Out of String Space) error. The OS error sim-
ply means the garbage consumes more than 200
bytes (characters).

Since your empty records will contain garbage
until you fill them with something, it’s a good idea
to put some kind of data in all of them in advance.
Erase memory and type this program:

i@ OPEN "D"s+ #1, "NAMES/DAT"
20 FOR ¥ = 1 TO 10

3@ WRITE #1, "NO NAME"

40 PUT #1, X

5@ NEXT X

6@ CLOSE #1

RUN it. This program sets up a disk file named
“NAMES/DAT” which has ten records. Each
record contains “NO NAME™:

G e §

“WAMES /DAT
£

"NO NAME"
record 1

36

“"NO NAME"

record 2

"NO NAME"

record 3

"NO NAME"

record 4

"NO NAME"

record 5

"NO NAME"

record 6

"NO NAME"

record 7

"NO NAME"

record 8

“"NO NAME"

record 9

"NO NAME"

record 10

s

"/V/’rM%)DAT "

Now erase memory and type this:

1@ OPEN "D" #1, "NAMES/DAT"

2@ INPUT "RECORD NO, (1-1@)"5 R

30 IF R » 10 THEN 20

48 IF R < 1 THEN 130

58 GET #1, R

B@ INPUT #14 A%

70 PRINT A%$ "-- IS THE NAME IN RECORD" R

A MORE DIRECT APPROACH

8@ INPUT "TYPE NEW NAME ELSE PRESS
CENTER>"3 A%

9@ IF A% = "" THEN 20

100 WRITE #1, A%

118 PUT #1, R

1Z@ GOTO 20

130 CLOSE #1

RUN it. See how all your records initially contain
“NO NAME?” Then, you can change the data in
any of the records at will, as many times as you
want. (To end the program, type a @ as the
RECORD NO.)

READING ALL THE RECORDS

At this point, you might like the Computer to
print all of the records in your “NAMES/DAT” file
with their appropriate record numbers. SAVE
your program, if you want, erase memory, type,
and RUN:

1@ OPEN "D", #1, "NAMES/DAT"
20R =1

30 GET =1, R

4@ INPUT #1, A%

5@ PRINT A% "-- IS IN RECORD" R
60 IF R = 1@ THEN 9@

7R =R+ 1

8@ GOTO 30

90 CLOSE #1

Line 20 makes R equal to 1. In the next lines, the
Computer GETs, INPUTSs, and PRINTS record 1.

Line 70 then makes R equal to 2 and the whole
process is repeated with record 2. When R equals
10—the last record in the file—the program ends.

There are many occasions when you will not know
the last record number in the file. Change line 60
and RUN the program:

6@ IF R = LOF(1) THEN 90

LOF looks at the file which buffer #1 (the number
in parenthesis) is communicating with. It tells
the Computer what the last record number in that
file is.

MORE POWER TO A RECORD

So far, we have been PUTting only one “field” of
data in each record. We can make the file more

organized by subdividing each record into several
fields.

Erase memory, type, and RUN this program:

1@ OPEN "D", #1, "BUGS/DAT"

20 WRITE #1, "FLIES", 1000000 "HAIRY"
30 PUT #14 Z

34 GET #1, 2

36 INPUT #1, D%, Ny T%

38 PRINT D%y Ny T%

40 CLOSE #1

Line 20 WRITESs three fields of data into buffer

#1. Then, line 30 PUTSs the entire contents of
buffer #1 (all three fields) into record 2 of the file:

beginmnsy

\sfbcltgl /ZZ)/¥7-';

record 1

"EELEES)

record 2

1000000, "HAIRY"

e/

“ASCCG; /46b97rji

Line 34 GETs everything in record 2 and reads it
into buffer #1. Then, line 36 INPUTSs all three
fields of data from buffer #1 and labels them as
D$, N, and T$.

Try substituting this for line 36 and RUN.. ..

36 INPUT #1, D%

Since this line asks the Computer to INPUT only
the first field of data in buffer #1, it INPUTs only
“FLIES”

37

A MORE DIRECT APPROACH

38

PROGRAMMING EXERCISE 7.2

‘What do you think the Computer
would print if you ran the pro-
gram, using this for line 367 Why?

38 INPUT #1: N

PROGG EXERCISE 73

 Change the program which stores

the “NAMES/DAT” file so that
each record will contain five fields
of data:

1. name

2. address

3. city
4. state

5.zip

vl CHAPTER CHECKPOINT

1. What are records? Why must you use them
to access data directly?

2. What are fields? ; '

3. What is the difference between a sequential
access and a direct access file?

4. Why is it quicker to update a direct access
file?

SECTION III

After writing disk programs for a while, you might
want to make them more efficient. Perhaps you'll
want to put more data on the disk. You might also
want to economize on memory space or use some
extra buffer space.

At that time, we invite all of you ambitious people
to read this section. The subject matter is more
advanced and technical. Once you finish it, though,
you’ll have all the information you need to write the
best possible disk programs.

39

i3
3

16,280

HOW MUCH CAN ONE DISK HOLD?
(What the Computer writes in a Disk File)

Your disk is divided into thousands of equal-sized
units. Each unit is a “byte.” One of these bytes can
hold one character. Thus, the word STRAW will
consume five bytes of disk space.

An empty disk contains 161,280 bytes. 4,608 of
them house the directory. This leaves you 156,672
for your disk files.

Note: A disk contains 35 tracks. Each track contains
18 256-byte sectors, or 18 x 256 = 4,608 bytes. One of
the tracks is for the directory. This leaves 156,672
bytes (4,608 bytes per track x 34 tracks).

Does this mean you can use the entire 156,672
bytes for data? Possibly. There are two factors
which will determine this.

The first has to do with the way the Computer
allocates space for a disk file. It stores a file in clus-
ters. (We call them granules.) Each granule con-
tains 2,304 bytes.

Because of this, all of your disk files will contain
a multiple of 2,304 bytes. If your file contains

2,305 bytes of data, for example, the Computer
will allocate 2 granules for it, or 4,608 bytes (2,304
x 2).

The Computer allocates file space in this manner
because it’s the most efficient way to create a file.
It is very tricky to change this and is something
that only very technical people would want to do.
(See Chapter 11, Technical Information, for addi-
tional information.)

The second factor which affects how much data
you can put in a disk file is your program. Some
disk programs are very efficient. Others put a lot
of overhead and empty space in the file.

In the next two chapters, we're going to compare
eight different types of programs. Each will store
the same data — 5, “PEN, — 16, and “PAPER” —
in a disk file named “OFFICE/DAT. The amount
of overhead and empty space each program will
put in “OFFICE/DAT” will vary greatly.

41

HOW MUCH CAN ONE DISK HOLD?

WRITING ON THE DISK

Program 1 uses WRITE to put this data on the
disk. Type and RUN it:

PROGRAM 1
21 bytes

1@ OPEN "O", #1, "OFFICE/DAT"
2@ WRITE #1, 5, "PEN"

3@ WRITE #1, -16+» "PAPER"

40 CLOSE #1

There is an easy way to see what lines 20 and 30
wrote on your disk. Type these two lines exactly as
they are above, but leave off the #1 in each line.
This will prevent the Computer from writing the
data on your disk (via buffer #1). The Computer
will write it on your screen instead. Type:

WRITE 5 "PEN"
WRITE -16+ "PAPER" (ENTER

Look very carefully at what the Computer
WRITEs. Every blank space and punctuation
mark counts.

Notice the way the Computer WRITEs the two
strings (PEN and PAPER). It puts quotation
marks around them. It WRITESs the numbers (5
and -16) differently. If the number’s negative, the
Computer puts a minus sign in front of it. If it’s
positive, the Computer simply puts a blank space
in front of it.

There are two characters you typed which the
Computer didn’t WRITE on the screen. These are
the two characters which you typed at the
end of the WRITE lines. It skipped down to the
next line instead:

5, “PEN"
oK
-16+ "PAPER"
OK

When writing on the disk, the Computer actually
WRITEs each character exactly as you
typed it. This illustration shows what Program 1
WRITEs on your disk. (We used asterisks to rep-
resent the characters):

42

\‘OFFlc

W,E‘*“*‘

/DAT "

Lnad

%

“OF FICE /DAT ”

7

 S+"PEN"*-16+"PAPER"*

Note: Want to be precise? What the Computer
actually WRITEs on the disk are binary codes. Each
character has an ASCII code (see Appendix D) which
the Computer converts to a binary number.

Count the characters. Make each (repre-
sented by an asterisk), comma, and quotation
mark count for one character each. Don’t forget
the blank space preceding 5. What you should
come up with is 21 characters. Program 1 puts 21
bytes in “OFFICE/DAT?”

Since the Computer allocates file space in clusters,
“OFFICE/DAT” will actually consume 1 granule
of disk space or 2,304 bytes. However, for the pur-
pose of comparison, we’ll only look at the 21 bytes
which Program 1 puts in “OFFICE/DAT?”

A DISK-EYE VIEW

To input “OFFICE/DAT, type and RUN this
“INPUT Program” (erase memory first):

INPUT PROGRAM

1@ CLS

2@ OPEN "1", #1, "OFFICE/DAT"
3@ IF EOF(1) = -1 THEN B@

40 INPUT #1, A: BS$

5@ PRINT: PRINT "DATA ITEM :" A
6@ PRINT "DATA ITEM :" B$

70 GOTO 30

80 CLOSE #1

It did input your data items. However, it did not
input the quotation marks, commas, and blank
spaces which we told you were interspersed with
your data.

To actually see what Program 1 wrote on your
disk, you can use a “LINE INPUT Program?’ First

HOW MUCH CAN ONE DISK HOLD?

SAVE the “INPUT Program” you now have in
memory. (You’ll be using it later.)

Now change it into a “LINE INPUT Program.
Delete line 50 and change lines 40 and 60. Type:

40 LINE INPUT #1, L%
50
6@ PRINT "DATA LINE :" L%

and RUN ... Line 40 INPUTSs an entire LINE,
rather than one single data item from the disk file.
This LINE includes everything up to the ENTER
character — punctuation marks, spaces and all.

In the “OFFICE/DAT” file, the first LINE contains
5, “PEN? Line 40 labels this line as L$ and line 60
PRINTS it on your screen.

The program then INPUTs and PRINTs - 16,
“PAPER” — the second and final line in the file.

We can easily alter this program so that it will
count how many bytes are in the file. Add these
lines and RUN it:

25 PRINT "THIS FILE CONTAINS :"
27 PRINT: PRINT: PRINT: PRINT
57 M$ = L%+ "»"

6@ PRINT M%3

B5 L = LEN(M$) + L

90 PRINT @ 3944 L "BYTES"

Line 57 adds an asterisk to each LINE. This aster-
isk represents the character. Line 65 then
counts the total number of characters (bytes) in
each line.

This is the entire “LINE INPUT Program”:
LINE INPUT PROGRAM

10 CLS

2@ OPEN "I", #1, "OFFICE/DAT"
25 PRINT "THIS FILE CONTAINS :"
27 PRINT: PRINT: PRINT: PRINT
30 IF EOF(1) = -1 THEN 80

40 LINE INPUT #1, L$

57 M$ = L$ + "=

6@ PRINT M%3

65 L = LEN(MS$) + L

78 GOTO 3@

80 CLOSE #1
9@ PRINT @ 384, L "BYTES"

SAVE it. It will be useful in comparing what Pro-
grams 2, 3, and 4 put in your disk file.

PRINT—FOR A CHANGE

So far, we’ve used only WRITE to put data in a
disk file. If you’ve used other forms of BASIC, you
might be accustomed to using PRINT rather than
WRITE.

The Color Computer disk system allows you to do
this. However, PRINT is much more tricky to use.
If you're not used to it, don’t bother learning all
this. Skip to Program 4.

... Still with us? KILL your old “OFFICE/DAT”
file by typing:

KILL "OFFICE/DAT"

Now erase memory, and type and run Program 2.
Then RUN the INPUT or the LINE INPUT Pro-
gram, if you'd like.

Here’s Program 2:

PROGRAM 2
42 bytes

1@ OPEN "0", %1, "OFFICE/DAT"
20 PRINT #1, 5, "PEN"

30 PRINT #1, -164 "PAPER"

40 CLOSE #1

Lines 20 and 30 PRINT your data to buffer #1
which, as you know, is one of the 15 buffers which
will send your data to the disk file. To see what
Program 2 PRINTS, type:

PRINT 5, "PEN"
PRINT -16 "PAPER"

Notice the Computer did not enclose the strings
— PEN and PAPER — in quotes, as WRITE did.
This will be important to know later.

Now look at the blank spaces. We’ll start with the
first one — the one before the 5. This means the

43

HOW MUCH CAN ONE DISK HOLD?

same thing it did with WRITE. 5 is a positive
number.

Now for the other blank spaces ... Whenever the
Computer PRINTs a number, it PRINTSs one
“trailing” blank space after it. This explains the
first blank space after the 5 and —16.

How about all the additional spaces? Remember,
from Getting Started With Color BASIC, what a
comma in the PRINT line does? It causes the Com-
puter to PRINT your data in columns, inserting
spaces between the columns.

The Computer will PRINT every single one of
these blank spaces in your disk file:

“OFFICE/DAT "~
v

) PEN*-16
PAPER*

endl of “OFFICE/DAT *

Count all the characters. Program 2 puts 42 bytes
into “OFFICE/DAT.”

Note: Unclear about what commas do in a PRINT
line? Type some more PRINT lines with commas
between data items:

PRINT 1, 25 3: 4y 3+ By 7+ B

PRINT "HORSE"+ "COW": "RABBIT",» "DOG"

PRINTING LESS

You might feel that all the blank spaces PRINT
inserts in your disk file are a waste of space. They
are. The way to get around this waste is to use
semi-colons. You might again recall, from Getting
Started With Color BASIC, that semi-colons in a
PRINT line compress your data. Type:

PRINT 535 "PEN"
PRINT -163 "PAPER"

You can compress your data on the disk in the
same manner. Erase memory and KILL your old

44

“OFFICE/DAT?” file. Then type and RUN this
program:

PROGRAM 3
17 bytes

1@ OPEN "O", #1, "OFFICE/DAT"
280 PRINT =1, 53 "PEN"

3@ PRINT #1, -16% "PAPER"

4@ CLOSE #1

This is what Program 3 PRINTSs on your disk. (Use
the LINE INPUT Program to test this, if you'd

like):
. os Lnal
/&‘}“"""” ‘¥ 1
of OFFICE /par *

“OFFICcE [PAT"

¢

5 PEN*-16 PAPER#*

Very efficient. Only 17 bytes. There are only three
blank spaces in this disk file. There is a space
before the 5 (to indicate that it is positive) and
spaces after 5 and — 16 (to indicate that they are
numbers). There are no blank spaces around the
strings.

THE TRICKY PART

There are certain types of PRINT lines which are
tricky. (We did warn you, didn’t we?) Type:

HOW MUCH CAN ONE DISK HOLD?

PRINT "PEN"§ "PAPER"
PRINT "JONES: MARY" (ENTER

PRINT "PEN"4 5

The line PRINT #1, "PEN"§ "PAPER" (in your disk
program) would print this in your disk file:

_end

#“J ﬁzﬁ

PENPAPER*

The Computer would read PENPAPER back into
memory as one item. (Reason: there is not a “deli-

meter” — a comma, quotation mark, or space — to
separate PEN from PAPER).

The line PRINT #1, "JONES;
this in your disk file:

i
£

JONES 4

MARY" would print

%
MQRYJf‘/A‘

The Computer would read JONES, MARY back
as two items: JONES and MARY. (Reason: The
Computer interprets the comma as a delimeter).

The line PRINT #1, "PEN",
in your disk file:

M/’M/@

N
cudof e

5, would print this

The Computer would read PEN 5
(with all the blank spaces) back into memory as
one item. (Reason: although the Computer nor-
mally interprets blank spaces as a delimeter, it will
not interpret them in this way when they follow a
string and precede a number).

For more information on using PRINT in disk pro-
grams, see the TRS-80 Model I, Model II, or Model
IIT Disk System Owner’s Manual.

AN ATTRACTIVE DISK FILE

PRINT USING is another word you can substitute
for WRITE. We discussed PRINT USING in Going
Ahead With Extended Color BASIC). Type:

PRINT USING "%
PRINT USING "%
(ENTER)

L$+us, 48"y "PEN", 5

Le+as, a8y "PAPER", -1B

You can get the Computer to print these same
images on your disk with this program. KILL
“OFFICE/DAT, erase memory, and type and
RUN:

PROGRAM 4
32 bytes

1@ OPEN "O", #1, “"OFFICE/DAT"

20 PRINT #1, USING "% Te+aa, unn]
“PEN", 5

30 PRINT #1, USING "% Lh+sn, 4"
"PAPER", -1B

40 CLOSE #1

which prints this in your disk file:

Segqinmng of flo

PEN $+ S.00*PAPER
$-16.00+%

Mgt

HOW MUCH CAN ONE DISK HOLD?

more programs which will put the same data in
direct access files.

Now the data is already in an attractive print for-
mat. You can input and print it using a simple line
input program. Erase memory, type and RUN:

1@ OPEN "I", #1, "OFFICE/DAT"

20 IF EOF(1) = -1 THEN G@
30 LINE INPUT #1, A%

4@ PRINT A%

50 GOTO 20

6@ CLOSE =1

All of the files we've created in this chapter are
sequential access. The next chapter compares four

¥ id

LIl __IINL IRl Il _IINL_IN It i

-—
““J

TRIMMING THE FAT OUT OF DIRECT ACCESS
(Formatting a Direct Access File)

Direct access files often contain a lot of empty
space. For example, our first program is very sim-
ilar to Program 1 from the last chapter. The
WRITE lines are identical. However, because it is
direct access, it will put 512 bytes in “OFFICE/
DAT”:

~ PROGRAM 5
512 bytes

1@ OPEN "D", #1, "OFFICE/DAT"
2@ WRITE #1, 5, "PEN"

30 PUT #1, 1

4@ WRITE #1, -16, "PAPER"

o0 PUT #1, 2

6@ CLOSE #i

A direct access program puts your data inside rec-
ords. Each record is 256 bytes. Program 5 puts two
records in the “OFFICE/DAT?” file. Therefore, it
will consume 2 x 256, or 512 bytes:

,&e?z;,w'.g/ o “OFFICE /DF

/

BEREERENERENEEENENNENEEE
ENEEENBEERERENEREREREERE
EEREEERENNENEENERRENEREE
EREENEEEENEERRERRENERRNE
EEEENEEEEENEEERNEERNNEEE
EERENERNRENEENREERENEREE
EERRREEEEREERERRRNEENEEE
EESENEREERERNEREERERERNE
EEEENEEEEENEEEREENERREEE

TRIMMING THE FAT OUT OF DIRECT ACCESS

record 1

- tERNERARPEREX

record 2 \

nd
“OFFIcEe/ DAT

This obviously wastes a massive amount of space.
Notice that what the Computer actually writes in
each record:

51 "PEN"#
16 "PAPER"#

is the same as what Program 1 wrote. Count the
bytes. That’s nine bytes in the first record and 12
in the second. You’ll need to know this for our next
program.

48

Note: We could have used PRINT or PRINT USING
rather than WRITE. The Computer would have then
PRINTed your data inside each record using the
PRINT or PRINT USING format.

TRIMMING THE FAT

Program 6 is the same as Program 5, except that
we inserted a number 12 at the end of line 10.This
tells the Computer to make each record 12 bytes
long:

PROGRAM 6
24 bytes

i@ OPEN "D"» #1, "OFFICE/DAT": 12
20 WRITE =1, 5, "PEN"

30 PUT =i, 1

40 WRITE #1, -16+ "PAPER"

50 PUT #1, 2

60 CLOSE #1

and really whittles this file down:
_4g4%?¢014rbaodﬁ}/

/ ‘OFF/CE/ DAT "
1] F) E N H *

record 1

-16+"PAPER" %

record 2

and of
“OFF ICE/ DAT *

In a direct access file, all records must be the same
length. (We explained why in Chapter 7.) If you
don’t tell the Computer how long to make them,
they will all be 256 bytes.

In this program, we made each record 12 bytes, the
size of the largest record. Type and RUN Program
6, if you'd like. (Be sure to erase memory and
KILL your old “OFFICE/DAT?” file first.) After
RUNning Program 6 you can use this program to
input the file:

TRIMMING THE FAT OUT OF DIRECT ACCESS

e ————————

Note: You can’t use the "LINE INPUT Program” to
determine how many bytes this file consumes. LINE
INPUT does not input the spaces in a record which
follow the ENTER) character.

EFFICIENCY, EFFICIENCY ...

We can get even more efficient. Our next direct
access program consumes only 16 bytes. Erase
memory, KILL the old “OFFICE/DAT” file, and
type and RUN Program 7.

There are two new words in this program which
we'll talk about later. Let’s see what the program
does first. SAVE it. Then erase memory and input
the file with this program:

By using FIELD and LSET, your program will
work the same as any direct access program. The
difference is what FIELD and LSET put in each
record:

Z‘aﬁz;zceo/%;é

. PEN

record 1

-1G6PAPER

record 2

™\ L

“OFFICE/DAT "

Only the bare essentials. Here’s how Program 7
works. ..

Line 20 tells the Computer to divide each record
into two fields. The first field is A$ and the second
is B$. These two fields will be the same size in
every record. A$ will always be 3 bytes and B$
will always be 5 bytes.

Now that we’ve established this, we can put data
in each field. Line 30 LSETs 5 in the AS$ field
(SETs the character 5 to the Left of A$). Since the
character 5 only consumes 1 byte and there are 3
bytes in the A$ field, there are 2 empty spaces at
the end of 5.

Notice we had to convert the number 5 to a string
by putting quotes around it. You cannot LSET a
number. You must convert it to a string.

Line 40 LSETs the word PEN in the B$ field.
Again, this leaves 2 empty spaces at the end of A$,
since PEN is 3 bytes.

Line 50 PUTs all this in record 1. Then, the same
process is repeated for record 2.

49

TRIMMING THE FAT OUT OF DIRECT ACCESS

Now let’s look at the “Fielded INPUT Program?”
Notice we used a FIELD line. RUN the program
without line 20 and see what happens. ..

Without a FIELD line, the Computer does not
know where the two fields are. Whenever you
input FIELDed records, use a FIELD line in your
input program.

Can you guess what the Computer would do if you
tried to LSET a long string, such as “123456789]
into one of the fields? LOAD Program 7, change
line 30, and RUN the program. (First, SAVE the
“Fielded INPUT Program” with line 20 reinstated.):

30 LSET A$ = "123456789"

Now load and RUN the “Fielded INPUT
Program’”

A$ is only 3 bytes. Therefore, the Computer only

LSETs the first 3 bytes of “123456789” It chops
the remaining characters off:

Sz
“OFFICE /DAT”
|

ERERENEE

record 1

record 2

Lwnd
“OFFICE / DAT *

More on this later ... Before going on to the next
program, try writing your own FIELDed program:

50

A NUMBER IS A NUMBER,...

Let’s assume you will be putting a lot of numbers
in your disk file. Every number might be a differ-
ent length:

-5.237632 31 673285
However, it is very important that the Computer
not chop any of the digits off. This might entirely

change the number’s value.

The word MKN$ will solve this problem:

The only difference between this program and pro-
gram 7 is lines 10, 20, 30, and 60. This is what it
stores in your disk file:

TRIMMING THE FAT OUT OF DIRECT ACCESS

'b%-‘/c.&:/gﬁreéj

w
record 1

5

}APER

rec

Lerdl of-

To read this program in, you need to decode the
string. LOAD the “Fielded INPUT Program” and
make these changes to it:

\ ’2 1@ OPEN "D", #1, "OFFICE/DAT" i@
EN Codla de«n5 '

20 FIELD #1, 5 AS A%, 5 AS B$%
S@ PRINT "RECORD" R ":"j CUN(A$): B$%

and RUN it...CVN (in line 50) decodes A$ to the

C’acﬁ, faq_,"'/b number it represents.

Note: The Computer only sees the first 9 digits of a
number. It rounds the rest off.

"OFFICE/DAT
MKN$ converts a number to a coded string. : SR
Regardless of how long the number is, MKN$ will %%%ﬂgga

always convert it to a string that is five bytes long.

" Wn*te a ﬂelded direct access pro- =

For example, change line 30 to LSET a number gram which will store the popula-

with more than five digits:

30 LSET A% = MKN$(123456789)

tions of all the countries. Make
each record contain 15 bytes wftb

these two fields:
Erase memory, KILL “OFFICE/DAT; and type 1. country— 10 bytes
and RUN the program. This is what it stores in 2. population— 5 bytes
your disk file: ' :
PROGRAMMING
EXERCISE #9.4

' 'O;z' FICE/ gﬂToﬁ{,

— —5

recor

JAPER| 5'&?&'
rocoTary ’S

endl
‘OFFICE/DAT "

' Wn‘te a program which will input
- the file you created in Exercise

JEN oole fr/23456787 FEE L

- I] CHAPTER CHECKPOINT

1. If youdo not specify the record length, how
‘many bytes will each record contain?

2. Why must you include a FIELD line when
you LSET your data? :

3. How many bytes will MKN$ convert a num-
ber iﬁto? 2

51

A e i e B R ST Nl

SHUFFLING DISK FILES
(Merging programs, using many buffers)

Because storing and retrieving disk files is so easy,
you will want to use them as much as you can. In
this chapter, we’re going to talk about some spe-
cial ways you can use them.

MERGING PROGRAM FILES

With the first method, you can build a program
out of related program “modules” SAVEd on disk.
You can then MERGE any of these program files
with whatever program you have in memory.

Type and SAVE these two related programs:

10 REM AGE CONVERSION TO MONTHS
ZO N = N * 12

3B A$ = STR$(N) + " MONTHS"

SAVE "MONTHS/AGE", A

18 REM AGE CONVERSION TO WEEKS
20 N = N % 52

30 A% = STR$(N) + " WEEKS"

SAVE "WEEKS/AGE", A

Be sure to type the A when you SAVE these pro-
grams. We’ll explain why later. .. Erase memory.
Now put this program in memory:

5 INPUT "TYPE YOUR AGE"3 N
4@ PRINT "¥OU HAVE LIVED" A%

and combine it with one of the programs you
SAVEd. Type:

MERGE "MONTHS/AGE" (ENTER

LIST the program...The Computer has MERGEd
“MONTHS/AGE” with the program you have in
memory. Notice the line numbers are the same as
they were in each individual program.

At this point, this is the program you have in
memory:

5 INPUT "TYPE YOUR AGE"j3 N
1@ REM AGE CONVERSION TO MONTHS
20 N = N * 12

53

SHUFFLING DISK FILES

30 A% = STR®(N) + " MONTHS"
4@ PRINT "YOU HAVE LIVED ABOUT" A%

MERGE “WEEKS/AGE” with it by typing MERGE
"WEEKS/AGE" (ENTER). Then LIST the MERGEd
program,

Notice that lines 10, 20, and 30 of the program you
had in memory were replaced by lines 10, 20, and
30 of the “WEEKS/AGE” program.

The line numbers tell the Computer how to merge
the two programs. When there is a conflict of line
numbers (two line 10s), the line from the disk file
prevails.

Now we’ll get technical (for those of you who are
interested). What the Computer normally writes
in your disk file is the ASCII code for each char-
acter of data. For example, it writes the word AT
with two codes — the ASCII code for “A” (65) and
the ASCII code for “T” (84). (The ASCII codes are
all listed in Appendix D).

However, when it SAVEs a program, it writes the
BASIC words differently. To save space, it com-
presses each BASIC word into a one-byte “binary”
code.

You can’t MERGE a file which contains these
binary codes. This is why we had you type the A
when you SAVEd the two programs above. The A
tells the Computer to write the ASCII codes for
each BASIC word rather than the binary code.

By checking the directory, you can see if the data
in your files are in ASCII or binary codes. If there
is an “A” in the fourth column, it’s all in ASCII
codes. A “B” indicates that some of the words are
in binary codes.

Note: Try typing MERGE "MONTHS/AGE", R (ENTER).
The R tells the Computer to RUN the program after
is MERGEd.

USING MORE BUFFER SPACE

When you start-up your disk system, it sets aside
two buffer areas in memory for disk communica-
tion. You can use either or both of them for read-
ing or writing data to a disk file.

54

Up to now, that’s all we've used — buffers #1 and
#2. But, as we've said earlier, you can use up to 15
disk buffer areas.

To use more than 2 buffers, you must first reserve
space in memory for them. To do this, use the word
FILES. For example, FILES 3 reserves 3 buffers.

Making use of all these buffers will greatly sim-
plify your programs. For example, let’s assume
you own a computer school. To organize it, you
first put all your students in a file named “COM-
PUTER/SCH?” Erase memory, type and RUN:

1@ OPEN "O", #1, "COMPUTER/SCH"
20 FOR X = 1 TO B

30 READ A%

40 PRINT =1, A%

0@ NEXT X

6@ CLOSE #1

7@ DATA JON, SCOTT, CAROLYN

80 DATA DONNA, BILL: BOB

Now you can write this program to assign the stu-
dents to a BASIC or assembly-language class.
Erase memory and type this “Class Assignment
Program”:

CLASS ASSIGNMENT PROGRAM

LBNETL ES R

20 OPEN "O", =1, "BASIC/CLS"

3@ OPEN "O", %2, "ASSEMBLY/CLS"

4@ OPEN "I", #34 "COMPUTER/SCH"

5@ IF EOF(3) = -1 THEN 120

68 INPUT #3, ST%

78 PRINT: PRINT ST%

8@ INPUT “(1) BASIC OR (2) ASSEMBLY
LANGUAGE"§ R

8@ IF R » Z THEN B@

18@ WRITE #R, S5T%

118 GOTO 50

120 CLOSE #i

130 CLOSE #2

148 CLOSE #3

RUN it. After assigning all the students to a class,
you can print a class roster with this program.
Erase memory, type, and RUN:

SHUFFLING DISK FILES

for "BASICI
ter of the

The “Class Assignment Program” has three buff-
ers open at the same time. Because of this, you are
able to communicate with three disk files at the
same time.

Line 10 reserves memory for these three buffers.
Lines 20-40 OPENSs the three buffers. Then, line
60 INPUTSs a student from “COMPUTER/SCH”
into buffer #3.

Line 100 WRITEs the name of the student to
either buffer #1 (“BASIC/CLS”) or buffer #2
("ASSEMBLY/CLS™).

When all the students from buffer #3 (“STU-
DENT/SCH”) have been input, line 50 sends the
Computer to lines 120-140, which CLOSEs the
three buffers.

CROWDING THE BUFFER

There’s one more thing you’ll like about FILES.
Erase memory, type, and RUN:

18 CLEAR 400

20 FILES 1, 400

30 A% = "NORMALLY, YOU WILL NOT BE ABLE TO
PUT ALL OF THESE SENTENCES IN A DISK
FILE AT THE SAME TIME. "

4@ B$ = "THIS IS BECAUSE, WITHOUT USING
FILES: YOU WILL ONLY HAVE A TOTAL OF
256 BYTES OF BUFFER SPACE. "

3@ C$ = "IN THIS PROGRAM: WE’'VE RESERVED
4@ BYTES OF BUFFER SPACE. "

6@ D$ = "THIS WAY YOQU CAN SEND ALL OF
THESE SENTENCES TO THE BUFFER AT THE
SAME TIME., "

70 E$ = "WHICH WILL OUTPUT THEM ALL TO THE
DISK FILE AT ONCE. "

80 OPEN "O", #1, "WORD/DAT"

9@ WRITE =1, A%, B$, C$, D%+ E%

100 CLOSE =1

Want to input this paragraph? Add these lines and
RUN:

280 OPEN "I", #1, "WORD/DAT"

210 INPUT #1, A% B$, Css D$s ES
220 CLS

230 PRINT A% B%3 C%5 D$3i ES

240 CLOSE #1

55

TECHNICAL INFORMATION
(Machine-Language Input/Output)

In this chapter, we’ll discuss the technical details
which are happening “behind the scenes?” You
don’t need to know this information when you are
programming in BASIC. In fact, you won’t even be
aware that these details are happening.

However, if you plan to write machine-language
disk programs or are simply interested in know-
ing all you can, you’ll definitely want to read this
chapter. We’ll begin by discussing how the Com-
puter organizes all the bytes on the disk. Then,
we’ll show how to access them through machine-
language programming and other advanced
techniques.

WHAT A DISK CONTAINS

When you power-up the Computer, it organizes
the bytes on the disk into tracks and sectors. Some
of these bytes control the system. The great major-
ity of them are for data.

Tracks

The Computer organizes the disk into 35 tracks,
numbered 0-34. Each track contains approxi-
mately 6,250 bytes* 6,084 of them are divided into
sectors; the remaining are for system controls.

Byte # Contents

0-31 System controls
32-6115 Sectors
6116-6249* System controls

The system control bytes all contain the value of
4E (hexadecimal).

*the number of system control bytes at the end of
each track might vary slightly due to slight speed
variations.

Note: One byte contains 8 bits. Each bit contains
either a I or a 0. Normally, we express the contents of
these bils as a hexadecimal (base 16) number. For
example, if we say a byte contains the value of hexa-
decimal 4E, it contains this bit pattern — 0100110,
You can find more information on hexadecimal and
binary number systems in a math textbook.

57

TECHNICAL INFORMATION

Sectors

Each track contains 18 sectors, numbered 1-18.
Each sector contains 338 bytes. 256 of them are for
data. The remaining bytes are for system controls.

Byte # Contents

0-55 System controls
56-311 Data

312-337 System controls

The hexadecimal contents of the system control
bytes are:

Byte # Hexadecimal Contents

0-7 00

8-10 F5

11 FE

12 Track Number

13 00

14 Sector Number

15 01

16-17 Cyclic Redundancy Check (CRC)
18-39 4E

40-51 00

52-54 F5

55 FB

312-313 Cyclic Redundancy Check (CRC)
314-337 4E

HOW THE DATA IS ORGANIZED

Each track contains 4,608 bytes which the Com-
puter can use for data:

18 sectors per track
x 256 data bytes per sector

4,608 data bytes per track

The data bytes in the 17th track contain the disk’s
directory. The data bytes in the remaining 34
tracks are for disk files:

Track # Contents of Track’s Data Bytes
0-16 Disk Files

17 Disk Directory

18-34 Disk Files

Disk Files

The Computer divides the 34 tracks for disk files
into 68 granules. Since each track contains two
granules, one granule is 2,304 bytes long:

58

9 sectors in %2 track
x 256 data bytes per sector

2,304 bytes in a granule

The Computer uses granules to allocate space for
disk files in 2,304-byte clusters. Thus, if a file con-
tains 4,700 bytes, the Computer allocates 3 gran-
ules (6,912 bytes) of disk space for it.

The location of the 68 granules, numbered 0-67, is
as follows:

Track 0, Sectors 1-9 — Granule 0
Track 0, Sectors 10-18 — Granule 1
Track 1, Sectors 1-9 — Granule 2
Track 16, Sectors 10-18 Granule 33
Track 17, Sectors 1-18 Directory
Track 18, Sectors 1-9 Granule 34
Track 34, Sectors 10-18 Granule 67

Note: The minimum size of a disk file is one granule
or 2,304 bytes. A disk will hold a maximum of 68 disk
files.

Disk Directory

The directory track (track 17) contains a file allo-
cation table and directory entries. The sectors on
this track which contain this information are:

Sector # Contents
2 File allocation table
3-11 Directory entries

The remaining sectors in the directory track are
for future use.

Directory Entries

The 9 sectors of the directory containing directory
entries (sectors 3-11) will hold up to 72 entries.
Each entry is 32 bytes long and contains:

TECHNICAL INFORMATION

Byte # Contents

0-7 Filename, left justified, blank-filled.
Ifbyte O = 0, the file has been deleted
and the entry is available.
If byte 0 = FF (hexadecimal), the
entry (and all following entries) have
not yet been used.

8-10 Filename extension, left justified,
blank-filled.

11 File Type
0 = BASIC program
1 = BASIC data file
2 = Machine-language program
3 = Text Editor source file

12 ASCII flag
0 = the file is in binary format
FF (hexadecimal) = the file is in
ASCII format

13 The number of the first granule in the
file (0-67).

14-15 The number of bytes in use in the last

sector of the file.

16-31 Reserved for future use.

File Allocation Table

Sector 2 of the directory contains a file allocation
table for each of the 68 granules on the disk. This
information is located on the first 68 bytes of the
sector. The remaining bytes contain zeroes:

Byte # Contents
0-67 Granule information
68-255 Zeroes

Each of the first 68 bytes corresponds with a gran-
ule. For example, byte 15 corresponds with gran-
ule 15.

These bytes will either contain a value of FF, 0-43,
or C0-C9 (hexadecimal):

FF The corresponding granule is free. It is
not part of a disk file.
00-43 The corresponding granule is part of a

disk file. The value, converted to dec-
imal, points to the next granule in the
file. For example, if the value in a byte
is 0A, 10 is the next granule in the file.

C0-C9 The corresponding granule is the last
granule in the file. The value contained
in bits 0-5 of this byte tells how many
of the sectors in that granule are part
of the disk file. (Bits 7 and 8 both equal

1)

SKIP FACTOR

The Computer reads or writes data to the disk one
sector at a time. Between sector reads or writes, it
does some processing.

The disk does not stop and wait for the Computer
to do this processing. It spins continuously.

For example, the Computer might read Sector 1
first. But by the time it’s finished processing Sec-
tor 1, the disk will have spun to Sector 6.

To allow for this time differential, the Computer
sets a “skip factor” of 4 when it formats the disk.
This notes on the disk that the computer should
skip 4 “physical” sectors between each “logical”
sector:

PHYSICAL LOGICAL
SECTOR SECTOR
1 1
2 12
3 5
4 16
5 9
6 2
7 13
8 6
9 17
10 10
11 3
12 14

59

TECHNICAL INFORMATION

PHYSICAL LOGICAL
SECTOR SECTOR
13 7
14 18
15 11
16 4
17 15
18 8

Thus, after reading Sector 1, the Computer will
skip “physical” sectors 2, 3, 4, and 5. The second
“logical” sector it reads will be “physical” Sector 6.

A skip factor of 4 is the optimum setting for
BASIC LOADs and SAVEs. However, if you're not
using BASIC, you might be able to use a faster
skip factor. For example:

DSKINI®: 3

tells the Computer to skip 3 physical sectors
between each logical sector.

Note: It’s difficult to determine the optimum skip fac-
tor. We recommend you leave it at 4 unless you have
a good understanding of how it works.

MACHINE-LANGUAGE DISK
PROGRAMMING

The disk system contains a machine-language
routine called DSKCON which you can call for all
disk input/output operations. To call this routine,
you need to write instructions to the Color Com-
puter’s 6809 Microprocessor.

See “Using Machine-Language Subroutines” with
Color BASIC in Getting Started with Color BASIC
for the procedures to use in accessing a machine-
language subroutine. See 6809 Assembly Lan-
guage Programming, by Lance Leventhal
(published by Osborne/McGraw-Hill) for the spe-
cific 6809 instructions.

Information on DSKCON

DSKCON'’s entry address is stored in locations
C004 and C005 (hexadecimal). You can call it with
this assembly-language instruction:

60

JSR [$CO0R41]

DSKCON'’s parameters are located in six memory
locations, organized as follows:

DCOPC RMB 1
DCDRV RMB 1
DCTRK RMB 1
DSEC RMB 1
DCBPT RMB 2
DCSTA RMB 1

The address of the first, DCOPC, is contained in
locations C006 and C007 (hexadecimal). You can
use the first five memory locations to pass param-
eters to DSKCON. DSKCON returns a status byte
to the sixth location, DCSTA.

These are the parameters you can pass to the first
five memory locations:

DCOPC — Operation Code

0 = Restore head to track 0
1 = No operation
2 = Read sector
3 = Write sector
DCDRV — Drive Number
0to3
DCTRK — Track Number
0 to 34
DCSEC — Sector Number
1 to 18

DCBPT — Buffer Pointer
the address of a 256-byte buffer. For read
sector, the data is returned in the buffer.
For write sector, the data in the buffer is
written on the disk.

This is the meaning of the status byte which the
DSKCON routine returns to location DCSTA:

DCSTA — Status

Bit 7 = 1 Drive Not Ready

Bit6 = 1 Write Protect

Bit5 =1 Write Fault

Bit4 = 1 Seek Error or Record Not
Found

Bit3 =1 CRC Error

Bit 2 = 1 Lost Data

TECHNICAL INFORMATION

If all the bits contain 0, no error
occurred. (See the disk service manual
for further details on the error bits)

After returning from DSKCON, you can turn off

the drive motor by putting the value of 0 in the
memory location FF40 (hex).

Sample Programs Using DSKCON

This program uses DSKCON to restore the head
to track 0:

R LDX ¢COB6 SET X AS A POINTER TO THE

PARAMETERS

CLR X DCOPC =@ FOR RESTORE

LDA #1 DCDRY =1 TO SELECT DRIVE
ONE

STA 14X

JSR [$C0@4] CALL DSKCON

LDA =00 TURN OFF THE DRIVE MOTOR

STA sFF40

TST GBX CHECK FOR ERRORS

BNE ERRORS GO REPORT THE ERRORS

RTS

LDA #4453 "E" FOR ERROR

STA 441D TOP RIGHT OF THE DISPLAY

RTS

This program uses DSKCON to read track 3, sec-
tor 17 of drive 0 into memory locations 3800
through 38FF:

LDX $Coes SET X AS A POINTER TO THE
PARAMETERS

LDA #2 DCOPC =2 FOR READ A SECTOR

STA X

CLR 14X SELECT DRIVE @

LDA %3 SELECT TRACK 3

STA 24X

LDA %17 SELECT SECTOR 17

STA 3X%

LDU +#%3800 DCBPT=3800@ (HEX) FOR
STORING DATA

STU 44X

JSkR [4C@@4]1 CALL DSKCON

LDA #%00 TURN OFF THE DRIVE MOTOR

STA $FF40

TST Bk CHECK FOR ERRORS

BNE ERRORS GO REPORT THE ERRORS

RTS

LDA #8455 "E" FOR ERROR

STA 41D TOP RIGHT OF THE DISPLAY
RTS

Note: DSKCON preserves the contents of all registers
except CC.

You can write a similar program to write to a sec-
tor by setting DCOPC to 3 instead of 2.

Saving a Machine-Language
Program

You can use the SAVEM command to store a
machine-language program on disk. You need to
specify where in memory the program resides (its
starting and ending addresses). You also need to
specify the address where it should be executed.
Use the hexadecimal numbers for all of these
addresses.

For example, let’s assume you have a machine-
language program which resides in addresses
5000-5FFF of memory. The address where it
should be executed is 500A. You would store this
program on disk by typing:

SAVEM "PROG/MAC",» &HSOQQ, BHSFFF, &HS00A

To load it back into memory, you could use the
LOADM command:

LOADM "PROG/MAC"

This would load “PROG MAC” back into memory
locations 5000-5FFF. The Computer would begin
executing it at location 500A.

If you want to load it into a different memory loca-
tion, you could specify an offset address to add to
the program’s loading address. For example:

LOADM "PROG/MAC",» 1000

would load “PROG/MAC” into memory locations
6000-6FFF. The Computer would begin executing
it at address 600A.

61

TECHNICAL INFORMATION

SPECIAL INPUT/OUTPUT
COMMANDS

BASIC offers two special input/output commands.
These commands input and output data directly to
a particular sector. They do this through bypass-
ing the entire disk’s filing system.

The first, DSKI$, inputs the data from the sector
you specify. This is its format:

DSKI$ drive number, track, sector, string vari-
ablel, string variable2

The first 128 bytes of the sector are input into
string variablel. The second 128 bytes are input
into string variable2. For example:

DSKI$ @+ 17+ 1+ A%, Bs (ENTER

inputs the contents of sector 1, track 17 of the disk
in drive 0. It inputs the first 128 bytes into A$ and
the second 128 bytes into B$. After typing this
command, you can display the contents of this sec-
tor with:

PRINT A%i B¢ (ENTER

Since DSKI$ will read any sector on the disk, it is
the only BASIC command which will read the
directory sector. This sample program uses DSKI$
to search the directory for filenames with the
extension “DAT”:

1@ FOR X=3 T0 11

20 DSKIs B,17:X,A%,B%

30 C% = A% + LEFT$(B$,127)
40 NAM$(Q) = LEFT$(C%:8)

62

S0 EXT$(@) = MID$(C%4+9:3)

6@ FOR N=1 TO 7

70 NAM&(N) = MID$(C$ N*32+1,8)

B@ EXTH(N) = MID$(C$,9+N%*32,3)

98 NEXT N

100 FOR N=@ TO 7

110 IF EXT$(N) = "DAT" AND
LEFT$(NAMS(N) +1)<*CHR$ (@) THEN PRINT
NAME (N)

120 NEXT N

130 NEXT X

The second command, DSKOS$, outputs data
directly to the sector you specify. Since it bypasses
the disk filing system, it will output data without
opening a file and listing its location in the direc-
tory. For this reason you need to be careful:

1. not to output data over the directory sectors
unless you no longer plan to use the directory.

2. not to output data over other data you presently
have stored on the disk.

The format of DSKO$ is:

DSKOS$ drive number, track, sector, stringl,
string2

Stringl will go in the first 128 bytes of the sector.
String2 will go in the next 128 bytes. For example:

DSKo$ @+ 1+ 3 "FIRST STRING", "SECOND
STRING" (ENTER

Outputs data to sector 3, track 1, on the disk in
drive 0. “FIRST STRING” will go in the first 128
bytes of this sector. “SECOND STRING” will go in
the second 128 bytes.

APPENDIXES

APPENDIX A

PROGRAMMING EXERCISE
ANSWERS
PROGRAMMING EXERCISE #5-1 90 GOSUB 430
1@ IF N$ = "" THEN CLOSE #1: GOTO 12

1@ PRINT: PRINT "CHECKS FOR CAR EXPENSES"
20 OPEN “I",#1{,"CHECKS"

30 IF EOF(1) = -1 THEN 100

4@ INPUT #1,A$,B.,C%

5@ IF C% = "CAR" THEN 70

110 WRITE #1, N$, A%, P$

120 GOTO 9@

13@¢ OPEN "I", #1, "MEMBERS/DAT"
140 OPEN "O", #2, "TEMP/DAT"

5@ GOTO 90 150 CLS : INPUT "DO YOU WANT TO CHANGE THE
70 PRINT: PRINT "CHECK PAYABLE TO:"3iA$ FILE"§ QZ%
80 PRINT "AMOUNT:" 3B 16@ IF EOF(1) = -1 THEN 320
90 GOTO 3@ 170 INPUT #1, N$, A%, P$
10@ CLOSE #1 18@ PRINT: PRINT "NAME :" N$

198 PRINT "ADDRESS :" A%
PROGRAMMING EXERCISE #6.1 280 PRINT "TELEPHONE :" P$

218 IF Q2% = "NO" THEN 300

220 PRINT: PRINT "DO YOU WISH TO:"

23@ PRINT "1) CHANGE THE ADDRESS?"

240 PRINT "2) DELETE THE MEMBER?"

250 PRINT "3) GO ON TO THE NEXT MEMBER?"
260 INPUT N

278 ON N GOTO 290, 16@, 300

280 GOTO 230

1@ OPEN "I", #1, "ANIMALS/DAT"

20 OPEN "0O", #2, "NEW/DAT"

30 IF EOF(1) -1 THEN 70

40 INPUT #1, A%

5@ WRITE #2, A%

6@ GOTO 3@

7@ CLOSE =#1: CLS

BB PRINT "INPUT ANIMALS YOU WANT TO ADD"

90 PRINT "PRESS <ENTER> WHEN FINISHED" 290 INPUT "INPUT NEW ADDRESS"i A%
18@ INPUT A% 300 WRITE #2, N$., A%, P$
118 IF A$ = "* THEN 140 318 GOTO 160
120 WRITE #2, A$ 320 PRINT: INPUT "DO YOU WISH TO ADD A NEW
130 GOTO B0 MEMBER"; Q3%
140 CLOSE #2 330 IF Q3% = "NO" THEN 380
150 KILL "ANIMALS/DAT" 340 GOSUB 430
16@ RENAME "NEW/DAT" TO "ANIMALS/DAT" 350 IF N$ = " THEN 380
360 WRITE #2, N$, A$, P$
PROGRAMMING EXERCISE #6.2 370 GOTO 340

380 CLOSE #1, #2
39@ KILL "MEMBERS/DAT"
42@ RENAME "TEMP/DAT" TO "MEMBERS/DAT"

1@ OPEN "I", #1, "ANIMALS/DAT"
20 OPEN "O", #2, “NEW/DAT"

30 IF EOF(1) = -1 THEN 10@

40 INPUT #1, A% 412 GoTO 1@

SP PRINT: PRINT A$ 4Z@ END

B2 INPUT "DO YOU WISH TO DELETE THIS"; Ré 43@ CLS: PRINT "PRESS <ENTER> WHEN FINISHED"
70 IF R$ = "YES" THEN 50 : PRINT

80 WRITE #2, A% 440 INPUT “NAME OF MEMBER:"} N$%

9@ GoTo 30 45@ IF N$ = " THEN 480

100 CLOSE #1 4G@ INPUT "ADDRESS:"i A%

118 CLOSE #2 478 INPUT "PHONE NUMBER:"; P$

12@ KILL "ANIMALS/DAT" 48@ RETURN

132 RENAME "NEW/DAT" TO "ANIMALS/DAT"
PROGRAMMING EXERCISE 7.1

PROGRAMMING EXERCISE #6.3
10 OPEN "D", #1, "NAMES/DAT"

1@ CLS: PRINT "DO YOU WISH TO --" 20 WRITE #1, "J. DOE"

20 PRINT "(1) STORE A NEW FILE" 30 PUT #1, 2

30 PRINT "(2) SEE THE FILE" 31 WRITE #1, "BILL SMITH"
49 PRINT "(3) END" 32 PUT #1, 3

30 INPUT O1 34 GET #1, 3

60 ON Q1 GOTO 8@ 130, 420 36 INPUT =1, A%

70 GOTO 1@ 38 PRINT A%

8@ OPEN "O", s1, "MEMBERS/DAT" 4@ CLOSE =1

64

APPENDIX A

PROGRAMMING EXERCISE 7.2

This produces an FD — Bad File Data — error in line
36. The first field in record 2 is “FLIES a string. Line
36 INPUTs it into N, a numeric variable.

PROGRAMMING EXERCISE 7.3

1@ OPEN "D", #1, "NAMES/DAT"

20 GOTO 7@

30 FOR ¥ = 1 TO 1@

4@ PRINT: PRINT "RECORD" X

5@ GOSUB 18O

6@ NEXT X

70 INPUT "WHICH RECORD(1-1@)"3% X
80 IF X > 10 THEN 170

98 IF X < 1 THEN END

100 GET #14 X

110 INPUT %1, N$,s A%+ C$,» S%, Z%
120 PRINT: PRINT "RECORD" X

130 PRINT N#$,»sA%+sCH++5%++2%

14@ INPUT "DO YOU WANT TO CHANGE THIS"i R$
150 IF R$ = "YES" THEN GOSUB 182
160 GOTO 78

170 CLOSE #1: END

18@ INPUT "NAME"§ N$

19@ INPUT "ADDRESS "i A%

288 INPUT "CITY "3 C%
21@ INPUT "STATE:"§ S%
220 INPUT “ZIP :"§ Z%

230 WRITE #1, N%$, A%, C$, 5%, Z%
24@ PUT #1, X
250 RETURN

PROGRAMMING EXERCISE #9.1

10 OPEN "D",#1,"MAIL/DAT"+37

20 FIELD #1.+15 AS LAST$,18 AS FIRS5T$:15 AS
ADDRESS$:1@ AS CITY$,2 AS STATE$,5 AS ZIP$

30 R =R+ 1

4@ CLS

5@ INPUT "LAST NAME"iL$

B8 INPUT "FIRST NAME"iF%

70 INPUT "ADDRESS"iA%

8@ INPUT "CITY"IC%

9@ INPUT "STATE"iS%

100 INPUT "ZIP CODE"iZ%

110 LSET LASTS = L%

120 LSET FIRSTS% = F$

130 LSET ADDRESS$ = A%

140 LSET CITY$ = C%
150 LSET STATES$ =
160 LSET ZIP% = Z$
17@ PUT #1,R

180 PRINT

190 INPUT "MORE DATA(Y/N)"3ANS
200 IF AN$ = "Y" THEN 3@

21@ CLOSE =1

PROGRAMMING EXERCISE #9.2

10 OPEN "D", =1, "MAIL/DAT", 57

20 FIELD %1, 15 AS LAST$, 1@ AS FIRST$: 15 AS
ADDRESS$, 1@ AS CITY$, 2 AS STATES$: 5 AS ZIP$

R =R+ 1

40 CLS

30 GET #1. R

6@ PRINT LAST$ "»" FIRSTS

70 PRINT ADDRESSS®

8@ PRINT CITY$ "," STATES

98 PRINT ZIP$

10@ PRINT

118 IF LOF(1)=R THEN 140

12@ INPUT "PRESS <ENTER> FOR NEXT NAME"IES$

138 GOTO 30

14@ CLOSE #1

PROGRAMMING EXERCISE #9.3

1@ OPEN "D":#1,"POP" 15

2@ FIELD #1,10 AS COUNTRY$,5 AS POP%
3R =R +1

48 CLS

58 INPUT "COUNTRY"iC%

68 INPUT "POPULATION"SP

7@ LSET COUNTRY$ = C%

B@ LSET POP$ = MKN${(P)

85 PUT #1.Rk

9@ PRINT

100 INPUT "MORE DATA(Y/N)"iAN%
118 IF AN$ = "Y" THEN 30

120 CLOSE =i

PROGRAMMING EXERCISE #9.4

12 OPEN "D", #1, "POP", 15

20 FIELD =1, 10 AS COUNTRY$, 5 AS POP$
3@ R =R + 1

42 GET #1, R

2@ PRINT COUNTRY$, CUN (POP%)

6@ IF LOF{(1)<>R THEN 30@

70 CLOSE %1

65

APPENDIX B

CHAPTER CHECKPOINT ANSWERS

CHAPTER 2

1. Unless the disk has been formatted, there is no way
to locate any given area on the disk.

2. The disk directory is an index of the names, loca-
tions, and types of all the files on the disk.

3. A disk file is an individual block of information
stored on the disk, under a filename.

4. Information stored in memory will only be there
temporarily. It will be destroyed if the Computer is
turned OFF or if you execute a NEW, LOAD, DIS-
KINI, BACKUP, or COPY command. (We'll discuss
BACKUP and COPY in the next chapters). Infor-
mation stored on disk will be there permanently. It
won’t be destroyed if the Computer’s turned off or if
memory is cleared. (Don’t leave a disk in the drive
when you turn the Computer off. We'll explain why
in the next chapter.)

5. The only way to change the contents of a disk file is
by storing different information under the same
filename.

CHAPTER 3

1. Turning the Computer ON or OFF while the disk is
in its drive may damage the disk.

2. Only felt tip pens may be used to write on the disk’s
label. Hard point pens and pencils may damage the
disk and garble the information on it.

3. Error messages tell you that something is wrong
with either the program you are running or the last
command that you used.

4. “Write-protecting” is a way of protecting your disks
from alteration. It is done by putting a gummed label
over the write-protect notch. You can read from a
“write-protected” disk, but you can’t write to it.

5. On a one-drive system, insert the source disk into the
drive and type BACKUFP® (ENTER. The Computer will
ask you to insert the destination disk and press
(ENTER). This procedure is repeated until the Com-
puter prints OK. On a multi-drive system, type the
BACKUP command specifying the drive number
with the source disk and the destination disk. For
example, BACKUP 0 TO 1 backs up the source disk
(in Drive 0) to the destination disk (in Drive 1).

66

CHAPTER 4

1. A file can be renamed with the RENAME command.
For example, RENAME “OLDFILE/NAM” TO
“NEWFILE/NAM” renames OLDFILE/NAM to
NEWFILE/NAM. You must specify the extension for
both filenames so the Computer can find them.

2. You can find out how much space you have remain-
ing on the disk by typing PRINT FREE (2) ENTER. This
will tell you the number of granules left on the disk
in Drive 0. If you are running out of granules, you
might want to KILL a few files or switch to another
disk.

3. Unless otherwise specified, the Computer always
uses Drive 0. This can be changed by typing DRIVE
1, which enables you to access Drive 1 without hav-
ing to specify the number in your command. (i.e.,
now DIR and DIR1 would both get you the directory
of the disk in Drive 1.

CHAPTER 5

1. Buffer #1 is a temporary storage area for informa-
tion going between the disk and memory.

2. A disk file must be OPENed before any information
can go between the disk and memory.

3. A disk must be CLOSEd so that the information still
in the buffer will end up where it’s supposed to and
so that the file can be reopened. All files must be
closed before you switch disks.

4. A file OPENed for input allows information to go
from the disk file into the memory of the Computer.
A file OPENed for output allows information to go
from memory to the disk file.

CHAPTER 6

1. When you OPEN a “sequential access” file, you can
only OPEN it for “I” or “O” —not both. You can’t out-
put to a file opened for “I) nor can you input from a
file opened for “O”

2. No. The file must first be closed and then reopened
for input.

APPENDIX B

CHAPTER 7

1. Records are equal-sized divisions in your disk file
where you can put your data. Since each is the same
size, the Computer can use them to access your data
directly.

2. Fields are subdivisions of records.

3. In a sequential access file, the only locations the
Computer knows are the beginning and ending of
the file. In a direct access file, it can determine where
each individual record is (by the size of the records).

4, Since each record of the file has a known location, the
Computer can access it without going through the
preceding parts of the file, as it would if the file was
sequential.

CHAPTER 8

1. The minimum size of a disk file is 2,304 bytes (one
granule). Since the Computer allocates disk space in
granules, a file can be no smaller than one granule.

2. The Computer first WRITEs the number’s sign (a
minus sign if it’s negative or a blank space if it’s pos-
itive). Then it WRITEs the number itself. Immedi-
ately following the number, it WRITEs on trailing
blank space.

3. A string is written with quotation marks around it.

4. INPUT inputs only the data items listed, while LINE
INPUT inputs everything up to the character.

5. A comma causes the Computer to space over to the
next print column before printing another data item.

6. A semicolon causes the Computer to print the data
items immediately next to each other.

7. A string is printed simply as the string itself. It is not
enclosed in quotation marks.

CHAPTER 9
1. The Computer will set the record length at 256 bytes.

2. The data must have a field with a specific length for
it to be LSET. This length is assigned in the FIELD
line.

3. MKNS$ converts a number into a 5-byte coded string.

CHAPTER 10

1. You must type an A at the end of your SAVE com-
mand if you plan to ever MERGE it with a program
in memory.

2. The line number of the program saved on disk
prevails.

3. The Computer reserves two buffers when you power-
up.

4. The Computer reserves a total of 256 bytes of buffer
space when you power-up.

5. FILES 3, 3000 get the Computer to reserve 3 buffers
with a total of 3000 bytes of buffer space.

67

APPENDIX C

SAMPLE PROGRAMS

SAMPLE PROGRAM #1
BALANCING YOUR CHECKBOOK

This program creates a master disk file which contains
all your checks and deposits for the entire year. You can
print them out by the month or the year. If you want to
use your printer, change the appropriate PRINT lines
to PRINT # — 2. (See Chapter 21 in Getting Started
with Color BASIC).

1@ 7 Checkbook Program
24
38 Thiz proSram pProvides a

record of wvour checkszs

4@ 7 depositzs and balances.
The checksz can be lTabeled

30 ° with an account number to
zhow to what expenze

60 thev were Paids zuch a:z
medicalsrents Foadseto,

78 The prod9ram uzes direct
addreszsingseach file record

8@ ° being 4@ bvtez longs and
formatted az Ffollowz: 8B

9@ * bwvtes for the dates 4 bvtes
for the check or depozit

1@ - 21ir numbers 20 bvtez for
the recirient of the check

11@ ¥ 3 bvtez for the account
numbers and 3 bytez for the

s amount of the check or
deposzit.
138 °

140 CLLEAR 1200

150 DIM CHR$(50)

168 CL.S

1780 PRINT @ 1@7s"SELECTIONG:"

188 PRINT a 16297"1) ADD CHECKS
TG YOUR FILE®

198 PRINT & 194+"2) LIST YOUR

CHECKSs DEPOSITS. "

200 PRINT & Z29:"AND BALANCES®
230 PRINT & 322s"3) END JOB?7Y

240 PRINT @ 394 "{1y2y OR 3"
250 ANS=INKEY%

260 TF AN$="" THEN 250

270 ON VAL (AN$) GOSUBR 310,700
1080, 1540

280 QOTO 160

298

apg 7

1@ 7 Thizs subroutine inpuis
the data.

3za

68

340 OPEN "D"s#1:"CHECKS/DAT"+ 40
340 FIELD #1+8 AS DATE®s4 AS CHNO$,
20 AS PDTO%$s3 AS ACNO%s5S AS AMTS
358 REC LOF (1)

360 REC REC + 1

370 CLS

380 PRINT & &4
DEPOSIT(C/D)"
3980 AN$ = INKEY%
408 IF AN$ = "D" THEN 430

410 IF AN$ = "C" THEN 490

428 GOTO 390

430 INPUT "DEPOSIT DATE
(MM/DD/YY)"5D%

44@ INPUT "DEPOSIT SLIP NUMBER
(NNNN)"5C%

458 P% = "°

4608 INPUT "ACCOUNT NUMBER(NNN)"3A$
473 INPUT "AMOUNT OF DEPOSIT" s AMT
480 GOTO 35@

498 INPUT "CHECK DATE(MM/DD/YY)"3sD%
588 INPUT "CHECK NUMBER{(NNNN)"3:C$
51@ INPUT "PAID TO"3Ps$

520 INPUT "ACCOUNT NUMPER{(NNN)"3A$
5380 INPUT "AMOUNT OF CHECKY3AMT

54@ AMT = —-AMT

"CHECK OR

550 LSET DATEs$ = D%
560 LSET CHNO% = C$
578 LSET PDTO$ = P$
580 LSET ACNO% = A%

59@ LSET AMT$ = MKN$(AMT)
688 PUT #1,REC
&1@ PRINT a 320,
62@ AN$ = INKEY$
630 IF AN = "N" THEN &£60
648 IF AN® = "Y' THEN 360
&S50 GOTO 620

66@ CLOSE #1

"MORE INPUT(Y/N)"

670 RETURN

&80 7

&6

4" I Thiz zubroutine balances the

checkbook and outeutz the rezultsz,
71@ °

72@ OPEN "D"s#1s"CHECKS/DAT" s 40
730 FIELD #1,8 A5 DATE®$:4 AS CHNO%,
=@ AS PDTO%s3 AS ACNO$:35 AE AMTS
740 CLS

75@ PRINT a 16@."DO YOU WANT A
LISTING FOR A MONTH OR FOR THE"

760 PRINT & 192 "WHOLE YEAR7 (Y/M)"
77@ INPUT A%

7680 IF A% = "M" THEN PRINT & 2354,

APPENDIX C

"WHAT MONTH(MM) " : INPUT MN$

790 AL = B

800 FOR REC = 1 TO LOF(1)

810 GET #1,REC

820 PAL = BAL + CVN(AMTS)

B30 IF A% = "M" AND LEFT$(DATE$:ZX)
“x MN$ THEN 1030

B4@ CLS

850 IF PDTO$ = "

THEN 230

840 PRINT a &4 "DATE OF CHECK:z":
PRINT @ 84+DATE%

870 PRINT "CHECK NUMBER:" :PRINT

@ 116y CHNOS

B8@ PRINT "PAID TO:":PRINT a

148 PDTO$

8@ PRINT @ 1&68:"ACCOUNT NUMBER:":
PRINT @ 18@>ACNO%

QU@ PRINT "AMOUNT OF CHECK:" :PRINT

@ Z11sUSING "S#8#. H#" 5 ~-CUN(AMTS)
1@ PRINT "BALANCE:":PRINT &8 243,
USING "$$###. ##"3RAL

Q20 GOTO 980

P30 PRINT:PRINT:PRINT "DATE OF
DEFPOSIT:":PRINT a 85:DATES

240 PRINT "DEPOSIT SLIP NUMBER:":
PRINT @ 117 CHNO$

5@ PRINT "ACCOUNT NUMBER:" :PRINT
o 149y ACNOS

60 PRINT "AMOUNT OF DEPOSIT:":
FRINT a 18@:USING "sb##4. ##"
CVN(AMTS)

QYA PRINT "BALANCE:":PRINT a
Z1Z2yUSING "$$848. 4" sBAL

FE@ PRINT @ 256+ "PRESS <ENTER:>
FOR NEXT RECORD OR <R> TO RETURN
TO *SELECTIONS? ™

9980 AN$% = INKEY#®

1@ IF AN$ = CHR$(13) THEN 1230
1@1@ IF ANE = "R" THEN 1040

1020 GOTO 998

1030 NEXT REC

1048 CLOSE #1

1058 RETURN

1548 7

1550 °

1560 7 Thiz =zubraoutine terminates
the prog9ram.

15%7@ 7

1580 END

SAMPLE PROGRAM #2
SORTING YOUR CHECKS.

This subroutine will be especially helpful at tax time.
It takes the checks file which you created in “Sample

Program #1” and sorts all the checks by account. Want
to know exactly how much you spent on medical bills
(or business expenses, contributions, etc.)? This pro-
gram will let you know right away.

218 PRINT & 25B8B+"3) SORT YOQUR
CHECKS BY*"

220 PRINT & 2935 "ACCOUNT NUMBER?"
238 PRINT & 322+"4) END JOoB?*
240 PRINT @ 394 "(15s2+3s0R 4)*
278 ON VAL (AN$) GOSUB 310,700,
1280 1560

1060 7

1078 °

1280 * This subroutine zorts the
checkz from those with the

1299 smalliest account numbers
to the largeszt account numbers
1100 ° uzing a "bubble =zort",
Each check iz handled az one
111@ ° data =tring to make the
zwars easlier.

1128 7

1130 OPEN "D"s#1y"CHECKS/DAT" 40
1148 FIELD #1+40 AS INFO%

1150 FOR I = 1 TO LOF(1)

1160 GET #151

1170 CHRK$(I) = INFO%$

1180 NEXT 1

1198 CNT = @

1200 FOR I = 1 TO LOF(1) - 1
12180 IF MIDHS(CHK$(I)+33+3) <=
MIDS{CHK${I+1)533+s3) THEN 1260
1220 TEMP$ = CHK$(I)

1230 CHK$(I) = CHK$(I+1)

1240 CHK$(I+1) = TEMP%

1238 CNT = |

1260 NEXT 1

1270 IF CNT = 1 THEN 1190

1280 CLS

1290 PRINT @ 194 "WHAT ACCOUNT
NUMBER (NNN/ALL) "

1300 INPUT ANS$

131@ FOR I = 1 TO LOF(1)

1320 IF AN$ < "ALL" AND AN$ <>
MIDE(CHR$(I)+33:3) THEN 1510
1338 CL.s

134@ PRINT a 6&3"ACCOUNT NUMBER:®
IPRINT @ 85 yMIDS(CHKS(I) 133+ 3)
1358 IF MIDS(CHRK$(I):13:20) =

" " THEN 1410
1360 PRINT & 985 "DATE OF CHECK:":
PRINT @ 117sLEFTH(CHK${(1)+8)
1370 PRINT @ 130s"CHECK NUMBER:"
IPRINT @ 149 MIDS(CHR$(I)sPs4)
1380 PRINT @ 16Z+"PAID TO:i®:

69

APPENDIX C

PRINT & 181 sMID$S(CHK$(1)s13520)

1398 PRINT & 194 "AMOUNT OF CHECK:":

PRINT @ Z1ZsUSING "SE###, #4"
~CUN(RIGHT$(CHK$(I)+5))

1480 GOTO 1440

141@ PRINT & 98:"DATE OF DEPOSIT:":
PRINT @ 117sLEFT$(CHRKS(1):8)

1420 PRINT @ 13@,"DEPOSIT NUMPER:":
PRINT @ 149sMID$(CHKS(1) 591 4)

1430 PRINT @ 1635 "AMOUNT

OF DEPOSIT:":

PRINT & 1BQsUSING "$sHi#, #3
CVN(RIGHT$ (CHK$(I)35))

144Q PRINT 829@s " (PRESS <ENTER:

TO SEE NEXT®
145@ PRINT &322,
RETURN TO"

1460 PRINT & 3%54,"?SELECTIONS?®)"
1470 AZ$ = INKEY®

1480 IF AZ$ = CHR$(13) THEN 1510
1490 IF AZ$ = "R* THEN 15720

1500 GOTO 1470

1510 NEXT I

1520 CLOSE #1

1530 RETURN

"RECORD OR «<Rx> TO

SAMPLE PROGRAM #3
MEMBERSHIP LIST

Want to store the names and telephone numbers of all
your club members? This program puts them all in a
disk file in alphabetical order. Add a few lines to it, and
it will store their addresses and phone numbers also.

i@’ Create lizt and alrhabetize.
et I

30 7 The ohdiect of thiz erogram

iz to create a file of

4 7 alrhabetically arrang9ed namesz

and rhone numbersz. The

s names and numberz are Tirst
inPut into an arravsARRAYSE(I)

& ' then put inte alrhabetical

orderys and Finally put into

7a a dizk file called
The Tile 1z 35 brvtesz

ge o2 tongs all of it allaotted to

ane variables INFOS, The

G 7 file can be added to anviime
after its: creation and will

180 7 automaticallw be alrhabetized.
The Prog9ram can be uzed

11@ ° in condunction with the "Search
a 1iszt" Ppro9ram {(sample

70

"NAMES /NOGY .,

128 7
138 °
140 CLEAR 1850

150 DIM ARRAY#{(3@)

160 OPEN "D"s#1s "NAMES/NOS" 435
170 FIELD #1:35% A5 INFO$

Frodram #4).

186 °

190 ° Firzt the file iz checked
ta zee 1if there are anvy

20 records currently on it.
=14 ¢

22@ IF LOF(1) = @ THEN I=1:60 TO 310
230 FOR I=1 TO LLOF{(1)

248 GET #1141

250 ARRAYH(I) = INFO%

268 NEXT I

270

2aa The new names: and numbers

are inPut and then concatenated

298 7 into 1 =trings ARRAYS$(I)

308

310 CLS

328 PRINT a &4

JE@A INPUT "LAST NAME®" L%

A48 INPUT "FIRST NAME"3F%

5@ INPUT "MIDDLE INITIAL"M$

368 INPUT "AREA CODE" A%

A7 INFPUT "PHONE NUMBER" ;P4$

388 ARRAYS(1) = LEFTS(LE+" s "+FE+" "
+ME+ " "y 24) +ASHPE
390 PRINT & 288,"MORE DATA (Y/N)7*
400 ANE = INKEY®
410 IF AN$ = "Y*"
GOTO 310

420 IF AN$ = "N
430 GOTO 48
440 ¢

458 Thens
alphabetical
446 7

478 FOR J=1 TO 1
480 FOR K=J TO I
499 IF ARRaAY$(J)
THEN 530

500 TEMPE = ARRAY$(J)

510 ARRAY$(J) ARRAY$ (K)
520 ARRAYS (KD TEMPS
S5A0 NEXT K

540 NEXT J

Y7
Sa@ 7
Farred
sE@B 7
580 FOR N=1 T0O I

500 LSET INFO$% = ARRAYS(ND)
&A@ PUT #19NM

THEN I=I+1 =

THEN 47@

ARRAY$(I) iz rut
order,

into

< ARRAY$(K)

i

Finallvws the lizt iz tranz—

into "NAMES/NOG®.

APPENDIX C

&1@ NEXT N
620 CLOSE #1
630 END

SAMPLE PROGRAM #4
SEARCH FOR A NAME

Since the file you created in “Sample Program #3” is
already in alphabetical order, you can immediately
find the name you want. This program shows how.

1a -’ Search a lizt

el

A {NOTE: This pro9ram resuires
that a file called "NAMES/NOS

4@ ' exists-——zee "Create list and
alrphahetize——Samprle Prod9ram #3)

38 Thiz prod9ram searches a disk
file which hold:s namesz and

&R rhone numberzs in alrhabetical
order. The file iz a direct

7a
iz 35 bvtez langs and

8a iz formatted az followzs: 24
bvtes for the mname’ 3 byvtes

QU for the area coded B brtes
for the phone number. The

10a Prodram uzes iterative
zearching,
i@ 7

12@ OPEN "D"s#1s "NAMES/NOG" 4 35
130 FIELD #1224 A5 NAMES$:3 AS
AREA$:8 AS PHONES$

148 CLS

156 PRINT & 99 s "ENTER NAME (LAST.
FIRST MI)

16 LINE INPUT NM$

178 7
180 7
12@ °
200 N1$% = NM$
218 IF LEN{NMS)
220 IF LEN({NM$)
230 FIRST = 1
24@ MID = INT((LOF{1)Y+1)/2)

258 LAST = LOF(1)

26@ CNT = @

27a 7

280 Program checks the laszt
recard Firzt hecauvze 1t won’t
298 7 be checked in the regular
search

Anp 7

310 GET #1:LAGT

Initialization of variableszs

< 24 THEN 800
- 24 THEN BZz0

access Tile called "NAMES/NOSY,

320 IF NAME$ = NM$ THEN 450

33@

340 7 Program keers compParing NM$
with NAME$ from record MID

358 ° until NM$ iz found or encugh
records have been szeen

368 ° to zhow that it i=n’t in

the file

370 °
380 GET #1.MID
290 IF CNT > (LOF(1)+1)/2 THEN 710@

408 IF NAME$ < NM$ THEN 570
410 IF NAME$ > NM$ THEN 640
428 7

4308 7 When NM#% iz found it is
Printed out

44@

450 CL.S

4460 PRINT @ 104:NAMES$

4783 PRINT @ 134" ("3AREA$3") " sPHONES
488 PRINT a 1954 "PRESS <ENTER>
TG CONTINUE.®

49% PRINT @ 227 "ELSE PRESS <@k

TO QUIT!
280 AN$ = INKEY$
31@ IF AN$ = "@" THEN CLOSE:END

320 IF AN$ = CHR$(13) THEN 140
530 GOTO 500

540 7
550 °
560 °
570 FIRET = MID

388 MID = (MID+LAST)/2Z
5900 CNT = CNT + 1

6B GOTO 380

Suberodram for when NAME$S<NM$

&H10

6H2@0 7 Subrrodram for when NAME$:>NM$
638

&40 LAST = MID

658 MID = (MID+FIRST)Y/2

&A@ CNT = CONT + 1

&78 GOTO 380

&80 7

698 Subero9ram for when NM$ i=
nat found

aa

718 QLS

720 PRINT @ 1@0@.N1%35" NOT FOUND®
7383 PRINT a 13&s "TO TRY AGAIN
FRESS <ENTER:"

740 AN$ = INREY%

758 IF AN$ = "" THEN 740

T6R GOTO 140

7ia

8@ Subprogramz for maodifving

NM$% to a 20 bhvite string

71

APPENDIX C

790 °

800 NM$ = NME+" *

810 GOTO 210

820 NM$ = LEFT$(NM%s24)
838 GOTO =220

SAMPLE PROGRAM #5
UPDATE THE LIST

Update anything you want in the file you created in
“Sample Program #3” You can do it in a hurry with
this program.

16 Edit wvour namesz file

28

30 The obdect of thiz Pro9ram

iz to edit the "NAMES/NOS" File

4@ from "Create lizt and alepha-—
betize”" (Sample prod9ram #3). The

50 * ePro9ram can either retain a
records chande one of the variables
eh in that records or delete the
record entirely from the file.

70

80 ClL.s

99 PRINT & 186, "SELECTIONG:"

188 PRINT @ 168:"1) EDIT RECORD"
11@ PRINT & zZ@®."2) DELETE RECORD®"
120 PRINT & Z32+"3) END JOB®

138 PRINT a 298Bs"14+2,
14@ AN$ = INKEYS$

15@ IF AN$="" THEN 140
160 ON VAl {ANS) GOSUR
17@ GOTO 8@

180 OPEN "D"s#1+s "NAMES. NOSY 35

190 FIELD #1124 AS NAME$:s3 AS AREA®.
8 A5 PHONES$

208 FOR I=1 TO LOF(1)

210 GET #1s1

OR 3

188,590,850

220 CLs

230 PRINT & 68+ "RECORD NUMBER:"31I
£4@ PRINT @ 10@: "NAME:"3NAME$

Z50@ PRINT & 13Zs "AREA CODE:" ;AREAS$
260 PRINT a 1é&4s "PHONE NUMBER":
FHONES$

270 PRINT a Z228+"EDIT THIS

RECORD? (Y/N)™

ZHO AN$% = INKEY%

Z9@ IF AN$ = "Y' THEN 3D

72

300 IF AN$ =
310 GOTO 280
J2@ PRINT a8 260,
332 AN$=INKEY$

"N" THEN 56@

"EDIT NAME? (Y/N)*

34@ IF AN$ = "N" THEN NM$ = NAME$:
GOTO 400
350 IF AN$ = "Y" THEN 370

368 GOTO 33@
278 LINE INPUT *®
380 IF LEN(NM$) < 24 THEN NM$ =
NM#+" " :1GOTO 380 ELSE 390

3920 IF LEN(NM$) > 24 THEN NM$ =
LEFTS (NM%s 24)

40@ PRINT @ 292y "EDIT AREA
CODE? (Y/N)"

413 AN$ = INKEYS$
42@ IF AN$ = "y*
430 IF AN$ = "N
GO TO 460

440 GOTO 410

NEW NAME" ; NM$

THEN 450
THEN A% = AREA$ =

458 INPUT NEW AREA CODE"3A%
468 PRINT & 3Z4: "EDIT PHONE
NUMBER? (Y/N)"

470 AN$ = INKEY$

480 IF AN$ = "Y' THEN 510

49@ IF AN$ = "N" THEN P$ = PHONE$:
GOTO 52@

388 GO TO 470

318 INPUT. NEW PHONE NUMBER"3P$

520 LSET NAME$ = NM$

540 LSET AREA$ = A%

540 LSET PHONE$ = Ps$

S50 PUT #1,.1

S6@ NEXT I

570 CLOSE #1

580 RETURN

590 OPEN "D":#1. "NAMES. NOS", 35
400 FIELD #1:Z4 AS NAME$:3 AS AREAS,
8 AS PHONES$

610 OPEN "D"s#2s "TEMP/FIL" y 35
&0 FIELD #2224 AS TNAMES:3 AS
TAREASy8 AS TPHONES

&30 FOR I=1 TO LOF(1)

640 GET #1151

&5 CLS

&6 PRINT & &8s "RECORD #"31

670 PRINT & 10@. "NAME:" sNAME$
&G@ PRINT & 13%s "AREA CODE:"3AREAS$
670 PRINT & 1é&4» "PHONE NUMBER:":
FHONE %

7@ PRINT @ 228« "DELETE THIS
RECORD? (Y/n)*

710 AN$ = INKEY$

2@ IF AN = "Y' OTHEN 8@

7A@ IF AN$ = "N" THEN 750

74@ GOTO 716

APPENDIX C

750 LSET TNAMES$
768 LSET TAREAS$
778 LSET TPHONE% =
780 J=J+1

790 PUT #2.:J

800 NEXT I

818 CLOSE
8200 KILL
838 RENAME
848 RETURN
850 END

NAMES$
AREA%

PHONE$

"NAMES/NOS"

"TEMP/FIL" TO "NAMES/NOS"

SAMPLE PROGRAM #6
GRADING TESTS

This program is ideal for teachers. It creates several
disk files of students and their test score. You can then
immediately find averages and standard deviation for
the entire class or for each individual student.

1@ * Te=t pro9ram

20

3@ * The obJdect of thisz Pro9ram

is to inPut =zeveral

40 * files——a names file and several

test filesz.
5@ * The files can
as deszired and the
6@ * test scores pProcessed to
averades and standard

then he accessed

find

70 * deviations. The filez are all
zequential accezs files=.

80 °

%0 °

120 ° Main module of prog9ram

1108 °

120 DIM NAME$(30)s GRADE(&s 30)
130 CLS

14@ PRINT & 1@7"SELECTIONS"
16@ PRINT & 164:"1) CREATE A
*NAMES® FILE"

17@ PRINT @ 196,"2)
TEST FILE"

180 PRINT & 228:"3)
190 PRINT & 26@s"4)
212 PRINT & 331,
220 AN$=INKEY$
230 IF AN$="" THEN 220

248 ON VAL(ANS) GOSUB 2908s430s
648+ 1430

230 GOTO 130

ADD A NEW

PROCESS SCORES"
END"
"1+2s3 OR 4"

260 °

276 * This subroutine builds a
"NAMES" file.

280 °

298 OPEN
3006 CLS
318 PRINT @ 96 "ENTER NAME OF
STUDENT:"

320 LINE INPUT NAMES

338 WRITE #1,NAMES

340 PRINT & 1965 " (PRESS <ENTER> TO
ENTER" :PRINT @ 228, "ANOTHER NAME,
PRESS <Q>":PRINT & 268:"TO QUIT)"
350 AN$=INKEY%

368 IF AN$="" THEN 350

370 IF AN$<>"Q" THEN 300

380 CLOSE #1

39@ RETURN

400 °*
410
files.
420
430 CLS
440 PRINT @ 64

45@ INPUT "NUMBER OF NEW TEST
FILE":;TF%

460 IF TFe = *
470 TF$ = *TEST"
480 OPEN "I",#1."NAME/FIL"
498 OPEN "Q"8#2:TF$

508 IF EOF(1) THEN 560
510 INPUT #1.:NAMES$

52@ PRINT "NAME:" :NAMES$

"O"s#1s “NAME/FIL"

This subroutine builds test

THEN 450
+ TF$

530 INPUT "SCORE" $SCORE
340 WRITE #2:SCORE
550 GOTO S00

5360 CLOSE #1.82

57@ RETURN

580 °*

598 * This subroutine inputs the
"NAMES" file and the

688 * desired tezt files and then
Processzes them either

618 > on a class bhasiz or an
individual basi=s and

620 * then pPrints out the results,
&30

640 OPEN "I":#1:"NAME/FIL"

650 IF EOF(1) = -1 THEN 490

6B Y = Y + 1
670 INPUT #1:NAME$(Y)
688 GOTO 650
69@ YEND = Y

700 CLOSE #1

718 CLS

720 PRINT @ 96

738 INPUT " HOW MANY TESTS ARE
THERE" 3N

73

APPENDIX C

748 FOR X=1 TO N
758 TF¢ = "TEST*
768 OPEN "I*+#1:TF%

778 FOR Y=1 TO YEND

78@ INPUT #1,GRADE(XsY)

798 NEXT Y

800 CLOSE #1

81@ NEXT X

828 CLS

83@ PRINT @ 13@,"INDIVIDUAL TOTALS
OR CLASS"

84@ INPUT " TOTALS(I/C)"3ANS
850 IF AN$ = "TI" THEN 900

86@ IF AN$ = "C* THEN 113Q

g87@ °

888 ° Thi= partion Processes the
scares by the =z=tudent.

890 °

908 FOR Y=1 TO YEND

91@ CLS

92@ PRINT & 1@5,NAME#(Y)

930 PRINT & 137:"SCORES:"
940 STUTOT = @

950 FOR X=1 TO N

768 PRINT TAB(18) GRADE(X:Y)

97@ STUTOT = STUTOT + GRADE(XsY)
98@ NEXT X
998 AVE(Y) = STUTOT /7 N

1008 NUM = @

1901@ FOR X=1 TO N
1020 NUM = (AVE(Y)
+ NUM

1038 NEXT X

1040 8D = SQR(NUM / N)
1@5@ PRINT USING "%
"AVERAGE: " $AVE(Y)

1860 PRINT USING "%
##. #8" 3 "STANDARD DEVIATION:"$SD

- GRADE(XsY))12

A S P2 A

1872 PRINT "PRESS <ENTER> TO SEE
NEXT NAME"

1280 AN$ = INKEY$

109@ IF AN$ = CHR$(13) THEN 1100
ELSE 1080

1108 NEXT Y

111@ CLS

1120 PRINT 8 105:"NO MORE NAMES"
1138 GOTO 1350

1140

115@ * This partion processzes the
zcares by the tezt number

1160 * for the whaole classz.

1170 °

1188 INPUT * WHICH TEST NUMBER"3$X
119@ CL.S

1288 PRINT 8 4s"DATA FOR TEST

74

+ RIGHT$(STR$(X)s1)

N

ELSE

NUMBER "3X
1218 PRINT *
1220 TTOT = @
1238 FOR Y=1 TO YEND

1248 TTOT = TTOT + GRADE(XsY)

1258 PRINT TAB(1) NAMES$(Y);TAB(25)
GRADE(XsY)

NAME" s TAR(25) "SCORE"

1268 NEXT Y

1270 AVE = TTOT / YEND

1280 NUM = @

1298 FOR Y=1 TO YEND

1308 NUM = NUM + (AVE - GRADE(X:Y))t>
131@ NEXT Y

1328 SD = SGR(NUM / (YEND - 1))

1330 PRINT:PRINT USING

"% LHLLBH, #H" 5

"AVERAGE FOR TEST #"3X3":"5AVE
134@ PRINT USING "%
##.#4" s "STANDARD DEVIATION:
135@ PRINT:PRINT " PRESS
FOR MORE"
1368 PRINT *
TO QuUIT®
1370 AN% = INKEY$

1380 IF AN$ = CHR$(13) THEN 820
1390 IF AN$ = "G" THEN 1400
1370

RETURN

"38D
<ENTERZ

PROCESSINGs <@

1400
1410
1428 °* This
the pro9ram.
1438 °

1448 END

subroutine terminates

SAMPLE PROGRAM #7
CREATE-A-GAME

These four programs will display 3 scenes — a house
and two rooms. Each scene is stored on disk as a pro-
gram file.

i@ "DISPLAY/BAS"

el I

33 The obdect of thiz eproQram
iz to zhow vwou how vyou Can

4@ acceszs another pro9ram from
WOUr mAain Pro9ram. It uzes=

s ? a main Frog9ram called

and three 9rarhics
&B 7 Frograms called "HOUSE/BARY s
"FOYER/PAS" s and "STAIRS/BAGY.
7@’ (Naturally thew muzt be on
dizlk before wvou can run thisz

"DISPLAY/BASY

N

APPENDIX C

a8n
7@
100
110
120
130
140
150
14@
170
180
170
200
21@
L
THIS
230
240
250
260
=70
=80
290

1 °
el
A
4@ P
5@ s
&3 D
74D
BM52
ga D
BMz@
g@a D
128
118
128
133
140
15@
160
178
180
198
200
2i@
220
JENLY

1@
2@
I P

PMODE

Progdram.)

CL.S
PRINT @ 1@&6s "SELECTIONS:"
PRINT & 178s "1) HOUSE"
PRINT & z@2s "Z) FOYER"
PRINT @ 234s "3) STAIRS"
PRINT @ 2&6b6s "4) END JORY
PRINT & 33@s "1+2:3: OR 4"
AN$ = INKEY$

IF AN$ = "% THEN 180

IF AN$% = "4* THEN 250

CLS

PRINT & 98+"TO RETURN FROM
SELECTION

PRINT @ 13@s"PRESS ANY KEY®

FOR I=1 TO 4@:NEXT I

ON VAL (AN$) GOTO 26@+270:280+290
LOAD "HOUSE/BAS"sR

LOAD "FOYER/BAS" R

LOAD "STAIRS/BAS" R

END

"THOUSE /BAS"

2l

CLS

CREEN 148

RAW "BMb6s 1AB3 D433 R332 U485 L32"
RAlW "BMb&&BIRIZZIEM4Gs 965 R132
» 15465R128"

RAW "BMSQ«263D6BBMI78sF65D460
&2 88505@"

RAW "BM@As 13463RED5BEMZQ6s 1363R50"
LINE {46:1946)—(66+68)PSET
LINE (178:+96)~(198:68)+sPSET
LINE (198y68)-(2B46+88)PSET
LINE (1744156)~(20b61136)PSET
CIRCLE (9Z+13@)+540

PAINT (@s@):3:4

PAINT (@+149):154

FAINT (&67+7@)4444

PAINT (55 105):244

PAINT (194s%&6)s234

PAINT (82y128)+31 4

AN$ = INRKEY$®$

IF ANg = "" THEN 210

LOAD "DISPLAY/BAS" R

"FOYER/BAS"

CLS

4@ PMODE 3.1

583 SCREEN 1.0

60 DRAW "BM1@4.603D923R4835U925L48"
70 DRAW "BM44,203R168:D13230L.1323
BLA4SLIZSBLASL1IAIBMA44, 103235082

80 DRAW "BMZzZD:460:D100;
BMZ44,585D124"

7@ DRAW "BM4z.10Z:D383R8:;U38:L8"
10@ DRAW "BM16s1483D4@35R43U40"
11@ DRAW "BM&4,1483D4035L.43U40"
120 DRAW "BMBDy 1243D4B30L45U34"
130 CIRCLE (1445108)+4

140 CIRCLE (238+117)44

150 CIRCLE (45+140)3515s41.3+0s.7
160 CIRCLE (45+5140)3515s45.3y.9551
178 CIRCLE (53.:136)s54

180 LINE (@s192)-(16+176)3sPSET
190 LINE (20+172)-(445152)s PSET
200 LINE (256+192)-(2125152)sPSET
210 PAINT (28+8)43:4

220 LINE (@s@)~(444200) 4 PSET

230 LINE (256s0)—(Z12420)sPSET
240 LINE (220:60)~{(244+:59) s PSET
250 LINE (16+5148)—(4445124)PSET
260 LINE (16:148)~(b&4y148)sPSET
270 LINE (6445148)-(80:124)4PSET
280 LINE (8@y124)—(52:124)sPSET
290 PAINT (1@+1@)13.4

J0@ PAINT (6Bs32)s344

31@ PAINT (Z4@:20)1344

320 PAINT (12B+64)92:4

330 PAINT (2287011244

348 PAINT (62:188)144 4

258 PAINT (78+15@)s44 4

368 PAINT (1B:154)1434

370 PAINT (&6B4128)s144

380 PAINT (128+196)3244

390 PAINT (4@+140):444

408 PAINT (48B:120):2+4

41@ CIRCLE (46+98)35¢2+ 2

420 AN$ = INKEY$%
436G IF AN = ©wo
44@ _OAD

THEN 420
"DISPLAY/BAS" R

18 * "STAIRS/PAS"

z0

30 PCLS

40 PMODE 3,1

50 SCREEN 1.0

60 DRAW "BM6@ Z05R1403D1203L 4030323
L43D523R43UZ03BM160, 1605L1285U150"

7@ DRAW "BM4s6Z3DI3BEMEB, 1663U102
BMi44, 1485R12"
8@ DRAW "BM4@:72:iDZ43R3S3UZ4351L.363

75

APPENDIX C

BM44y765D16REBULALSL.ZB"

0 LINE (32+12)-(92+12)«PSET

120 LINE (92:12)-010@s20) s PSET
118 LINE (@s@) - (4@ 2@) s PSET

120 LINE (Z2D002@)~{(259+Q0)+ PSET
130 LINE (Z200:140)-(2554192) s PSET
140 LLINE (@+192)—(32:146B)YPSET
153@ LINE (4+62)-(2Bs64)sPSET

168 PAINT (120+4)92+4

170 PAINT (20:sZ2Q)12+ 4

180 PAINT (230:s2Q)s2+ 4

190 PAINT (12@0:4@):25 4

200 PAINT (6Bs146)13+4

218 PAINT (ZQs44)134 4

220 PAINT (158:124):44 4

230 PAINT (42+74)s44 4

240 LINE (2B+8)-(14445148)PSET
250 LINE (64412)-(1%4s122)PSET
260 LINE (68412)-(1564116)PSET
270 DRAW "BM144s 1483038"

280 FOR I=@ TO 9

290 DRAW "BM-8.28:0U38"

300 NEXT I

212 DRAW "BM5&: 4Q3UZEIPM4AR. 315018
BM4@, 223010"

32 PAINT (56+84)1244

330 CIRCLE(S56486)91B13+.4:@:.5
340 LINE (51+48&)-(463+s84)sPSET
35@ DRAW "BMS&8431.45E73D8Y

260 FOR I=1 TO 32

370 CIRCLE (12@+178)s1%291/4y .55
380 NEXT I

382 DRAW "BMZ3Z: 17463U108sRZD1OG
383 CIRCLE (23291805 1%+4314.5+0
3834 CIRCLE (Z23Z+178)3b654525,55y .1
385 CIRCLE (232:80)+1%1451+0:.5
386 CIRCLE (232s8BX)sbsb4e2y.13.55
390 AN% = INKEY%

400 IF AN$ = "' THEN 2390

418 LOAD "DISPLAY/BAS"WR

SAMPLE PROGRAM #8
BUDGETING

This organizes your finances and prints out a journal on
your printer. You need a line printer with a line length
of at least 80 characters to run it.

1@ ° Buddet pro9ram

28

3B * The aobdect of thiz pro9ram

iz to build three direct acceszz

4@ ° filezs one a lizting of a
balanced buddety anothery a lizting

76

5@ of tranzactionzs and the
thirds a lizting of the updated

6@ ° budget. The prodram allows
far carrvover from the Previousz

70 7 period’sz budget. A dournal
can be printed out 9iving a liszt
B ° of the budgetsexprPenzezs and
halances. (NOTE: Az written:

9@ 7 this pPro9ram re=uires a printer
for cutputting the Jdournal.

12@ * Howevers with =1ight modifi-

cations it could be wuszed withaout
118 7 a printer.)

120 7

130 °

140 * Main madule of prod9ram

154 °

168 CLS

17@ PRINT 8 106+ "SELECTIONS:®
188 PRINT & 145s"1) BUILD BUDGET"
198 PRINT & 197:"2) UPDATE AN
ACCOUNT™

2@ PRINT @ 229:"3) PRINT OUT A

JOURNAL™

218 PRINT @ 261s"4) END JOB*

220 PRINT @ 329y "142:3y OR 470

230 AN$=INKEY$

248 IF AN$="" THEN 230

250 ON VAL (ANS$) GOSUR 340 950,
145@, 1970

268 GOTO 160

270 7

280 7 Thiz zubroutine builds the
budget Ffile {(called

290 * PUDGET.ORG)s and buildz ar
updatez the file BUDGET.UPD

0@ It allows wvou to input the
start date of the budget

31?0 ? and the total amount o
have to divide up to accountz.

32@ ° Tentative amountz are entered
far each account and a

330 7 running bhalance iz kert to
advise wou of the amount
340 7 Yeft in wour total
350 ¢

268 OPEN "D"s#1:"RBUDGET/0ORG" 5
37@ OPEN "D" . #2y "BUDGET/UPD"+ 5
280 FIELD #1:5 AS OAMTS

370 FIELD #2+5 AS UPDAMTS

4G GOSUR 1810

418 IF LOF(Z2) = @ THEN 470
42 FOR I=1 TO 9

430 GET #2251

440 AMT(I) = CVUN(UPDAMTS)

budget.

APPENDIX C

430 PTOT =PTOT + AMT(I)

46B NEXT 1

478 CLS

488 PRINT & 130."DATE(MM/DD/YY):"
490 PRINT @ 1462, "PROJECTED INCOME
FROM: "

SU@ PRINT @ 196 "SALARY:"

51@ PRINT & 228s"OTHER:"

22@ PRINT & 96

332 INPUT " DATE(MM/DD/YY):"3DATES
54@ PRINT @ 1é62s "PROJECTED INCOME
FROM: "

550 INPUT " SALARY: " $GAL

560 INPUT " OTHER: " 5OTHER

370 BTOT = BAL + OTHER

588 CLS

600 PRINT & 9:"CURRENT BUDGET*
610 PRINT "ACCT# DESCRIPTION
BALANCE"

620 SUMBUD = @

63 FOR I=1 TO @

6480 PRINT USING "H##HH#Y %

A LHEHE ., HH-" SACNO(I) 3
SPACE®sDESCH{I)3AMT (1)

&5@ SUMBUD = SUMBUD + AMT(I)

668 NEXT I

670 PRINT @ B6sUSING " SHHHHE., ##-"
TAMT (L)

480 PRINT & 419.USING

4 LEEHHEH, HHEY 3
"REMAINING MONEY:"sBTOT ~ {(SUMBUD
- PTOT)

69@ PRINT @ 451 "ENTER ACCTH# OF
ITEM TO BE"

Ja@ INPUT ¢ CHANGED (@@ TO
QUIT) " sAN

710 IF AN = @ THEN 790

720 CLS

T3 ON = AN / 100

74@ PRINT a 103:ACNON)

750 PRINT @ 138:DESCH{N)

760 PRINT @ 17@:"$%"5AMTIN)

778 PRINT: INPUT NEW
AMOUNT" s AMT (N)

788 GO TO 580

79@ DATE = VAL(LEFT$(DATE®:2) -+
MID$(DATE$:4+2) + RIGHTH(DATES,Z))
800 LSET 0AMTS MKN% (DATE)

81@ PUT #1s1

828 FOR I=1 TO 9

Bl LSET OAMTS MRNS (AMT (1))
840 LSET UPDAMTS$ = MRKN&(AMT(I))
858 PUT #1s1+1

860 PUT #2+1

870 NEXT I

li

888 CLOSE

890 RETURN

00 °

218 * This subroutine builds a
transaction file called TFILE.DAT
20 which contains any updates
to the buddets and updates the
386 * file BUDGET.UPD .

Q4B

5@ OPEN "D"s#1,"BUDGET/UPD"»5
P60 OPEN "D"s#2+s"TFILE/DAT"s 36
978 FIELD #1:5 AS UPDAMTS

9808 FIELD #Z+3 AS ACNO%$:,8 AS DATES,
20 AS DESC%+5 AS TAMTS

9@ FOR I=1 TO 9

1000 GET #1.1

121@ AMT(I) = CVYN(UPDAMTS$)

1020 NEXT I

1230 GOSUB 181@

124@ CLS

12538 SUMBUD = @

126@ PRINT @ 99 "CURRENT BRUDGET"
1@7@ PRINT "ACCT# DESCRIPTION
BALANCE"

1880 FOR I=1 TO 9

1290 PRINT USING "####% %

2 LuHES . HH-" SACNO(T) 5
SPACES$sDEBCS(I) sAMT (1)

1180 SUMBUD = SUMBUD + AMT(I)
1110 NEXT 1

1120 PRINT & B865USING
"EHEHE HH-" AMT (1)

1138 PRINT @ 419,USING "%
SEHEH. BH" 3 "TOTAL BALANCE:" ;SUMBUD
1140 PRINT & 451,"ENTER ACCT# OF
ITEM TO BE

1138 INPUT °® UPDATED (@B@ TO QUIT)"3AN
1160 IF AN = @ THEN 1350
1178 CLS

1180 N = AN / 100
119@ PRINT & 95.:AN
1280 PRINT DESCH(N)

121@ PRINT USING "% A
FEREH. HH" 3" CURRENT BALANCE" s AMT (M)

1228 PRINT:INPUT "DATE(MM/DD/YY)"3DT%

1230 PRINT "DESCRIPTION OF
TRANGACTION:"

12480 INPUT DS

125@ PRINT "AMOUNT OF TRANSACTION:®

126@ PRINT " (NEGATIVE NUMBER FOR A
CREDIT)"

127@ INPUT TRANS
1280 AMTIN) = AMT(N) - TRANS
1290 LSET ACNO$ = RIGHT$(STR$(AN)s3)

77

%

APPENDIX C

1308 LSET DATE$ = DT$
1310 LSET DESC® = D&%
1320 LSET TAMT$ = MRKN$ (TRANS)

1330 PUT #Z.LOF(2)+1

1340 GOTO 1040

1358 FOR I=1 TO @

1368 LSET UPDAMTS = MRN$(AMT(I))
1370 PUT #1.1

1380 NEXT I

1398 CLOSE

1400 RETURN

141@ °
1420 ° Thi=z zubroutine printz out
a Journal listing the

1430 ° buddetstranzactionzsand
bkalancesz.

14400 7

1450 OPEN "D" s $#1s "RBUDGET/ORG"+5
1460 FIELD #1535 A5 AMTS

147@ OPEN "D"+#2s"TFILE/DAT" s 34
1488 FIELD #2,3 A5 TACNO$:+8 A5
TDATES 2@ AS TRDESCE®sD AS TMTH
1490 GOSUE 1812

1508 CLS

151@0 PRINT @ 172 "PRINTING"

1520 Get #H1s4 1

1530 DATE$® = STRE(CYN{AMTE))

1540 IF LEN(DATE$) < & THEN DATES$
= " "+ DATES

1550 DATE® = LEFT$(DATE$:2) +

"/ o+ MIDS(DATES« 3020 + /" +
RIGHT$(DATE®: 2

1560 PRINT #-2«TAR(3@) "BUDGET FOR
THE PERIOD"

1570 PRINT #-2:sTAR(31)

"STARTING "3DATES

15880 PRINT #-2:PRINT #-2

1598 PRINT #-2:TAR(Z2B)"ACCOUNT OR®
1608 PRINT #-Z,TAB(1@)
TACCOUNT" s TAR{(Z7) "TRANSACTION"
1610 PRINT #-2+.TABR(1@) "NUMBER" 3

TAR(1I4)"DATE" s TAR(Z7) "DESCRIPTION" 5

TAR (47) " TRANSACTION" s TAR (61)
"BALANCE"

78

1620 FOR I=2 TO LOF(1)

1638 GET #1.1

1640 PRINT #-2

1650 PRINT #-ZsTAR(1Z2)YACNO(I-1)3
TAB(17)DATE®:TAB(Z27)DESC$(I~-1)3
TAB(61) CUN(AMTS)

1660 BAL=CVN(AMT%)

1670 FOR J=1 TO LOF(2)

1680 GET #Z,J
1698 IF ACNO(I-1)
THEN 1730

1700 BAL=RAL — CVUN(TMT$)

VAL TACNOS)

1710 IF CYN(TMT$) <. @ THEN CR$="CR"

ELSE CR#=""

172@ PRINT #-22TAR(17)TDATESITAR(Z27)

TRDESCH; TAB(47)ABS(CYN(TMT%)) 5 CR$
sTAR (61)PAL

1730 NEXT J

1748 NEXT I

1758 CLOSE

1762 RETURN

1770
1780 * Thiz zubroutine zetz the
vatuez of the acocount numberss

17980 7 ACNO(I)s and account
dezcrirtionzs DESCE(I).

legn

18180 FOR I=1 TO 9

1820 ACNO(I) = 1 % 100

19380 NEXT I

1840 DESC#%(1) = "FOOD"

1850 DESCH(Z) = "RENT"

1860 DEBCH(3) = "CAR"

1870 DESCH(4) = "UTILITIES"
1880 DESCH(5) = "INSURANCE"
1890 DESCH{&) = "TAXER"

190@ DESC#(7) = "CLOTHING"

1910 DESC#(8) = "ENTERTAINMENT"
1928 DESCH(9) = "MISCELLANEOUS"

1930 RETURN

1940 -

199@ * Thiz zubroutine terminates
the Program.

1960 7

1978 END

APPENDIX D

ASCII CHARACTER CODES

These are the ASCII codes for each of the characters on your keyboard. The first column is the character: the second
is the code in decimal notation; and the third converts the code to a hexadecimal (16-based number).

Chapter 15 shows how to use these codes with CHRS to produce a character.

DECIMAL HEXADECIMAL DECIMAL HEXADECIMAL
CHARACTER (o0 b CHARACTER /(o s
118 0 . WO .. N S N — AL

36

24
b

" 2A

44 2C
—

50
52
54
56
58

@ 64

40

*If shifted, the codes for these characters are as follows: is 92 (hex 5C); (@) is 95 (hex 5F); (&) is 91 (hex 5B);
(®) is 21 (hex 15); and (¥) is 93 (hex 5D).

79

APPENDIX D

LOWER-CASE CODES

These are the ASCII codes for lower-case letters. You can produce these characters by pressing the SHIFD and
@ keys simultaneously to get into an upper/lower case mode. The lower case letters will appear on your screen in
reversed colors (green with a black background).

DECIMAL HEXADECIMAL
CODE CODE

DECIMAL HEXADECIMAL

CHARACTER CODE CODE

CHARACTER

110

80

APPENDIX E

MEMORY MAP
DECIMAL HEX CONTENTS DESCRIPTION
0255 0000-00FF | System Direct See Section IV of Getting Started with COLOR
5 ' __| PageRAM BASIC for detailed information.
256-1023 0100-03FF | Extended Page RAM
1024-1535 0400-05FF Video Text Memory
1536-2440 0600-0988 Additional System This is used exclusively by DISK BASIC.
RAM
2441-top 0989-top of RAM | These Random Access Memory locations are allocated dynamically and
of RAM contain the following:
top of RAM is ofRAMis | 1. Random File Buffer | Total buffer space for random access files. 256
16383 for 16K : %m 16K | Area | bytes are reserved for this on start-up. This value
‘systems; | systems; 7FFF | : “can be reset by the FILES statement.
32767 for
32K iyahms

2. File Control Blocks
(FCBs)

Control data on each user buffer. 843 bytes are
reserved for this on start-up. This value can be
reset by the FILES statement: (number of buffers
set by FILES + 1) x 281 bytes.

I3 Graphics Video

Space reserved for graphics video pages. 6144

i Memory bytes or 4 pages are reserved for this on start-up.
This value can be reset by the PCLEAR
statement: number of pages reserved by PCLEAR
X 1,536 bytes per page. (Note: All pages must

e start at a 256-byte page boundary—i.e., a
e - memory location divisible by 256.)
' 4. BASIC Program Space reserved for BASIC and
Storage Variables. 6455* bytes (16K systems) or 22,839*
5. BASIC Variable bytes (32K systems) are reserved for this on start-
Storage up. This value can be reset by different settings of
6. Stack Random File Buffers, FCBs, Graphics Video
: Memory, String Space or User Memory.
7. String Space Total space for string data. On start-up, 200 bytes
are reserved, but this can be reset by the CLEAR
: statement.
8. User Memory Total space for user machine-language routines.
No space is reserved for this on start-up, but this
pe e . can be reset by the CLEAR statement.
32768-40959 | 8000-9FFF Extended COLOR Read Only Memory
BASIC ROM
40960-49151 A000-BFFF COLOR BASIC ROM | Read Only Memory
49152-57343 | CO00-DFFF COLOR DISK BASIC | Read Only Memory
ROM
57344-65279 | E000-FEFF Unused
65280-655635 | FFOO-FFFF Input/Output

*If you execute a PRINT MEM command, on start-up, you will get a number a little lower than this because of the
overhead necessary to execute this command.

81

APPENDIX F

82

SPECIFICATIONS

Type of disks

Disk Organization
(Formatted disk)

Operating Temperature
Memory Capacity
Unformatted

Soft sector
(I/0 sector/track)

Data transmission speed
Access Time
Track to track
Average
Settling time
Number of indexes

Weight of Disk Drive

Disk Controller

5Y4" mini-diskettes
Radio Shack Catalog
Number 26-305
26-405 (package of three)
or 26-406 (package of 10)

Single-sided
Double-density

35 tracks

18 sectors per track

256 data bytes per sector
Directory on track 17

18 to 113 degrees Fahrenheit
10 to 45 degrees Centigrade

218.8 kilobytes per disk
6.2 kilobytes per track
179.1 kilobytes per disk
5.1 kilobytes per track

250 kilobits per second
5 m sec.

100 m sec.

15 m sec.

1

3.8 kg.

WD1793

APPENDIX G

0

AE

AO

BR

BS

CN

DD

DF

DN

ERROR MESSAGES

Division by zero. The Computer was asked to
divide a number by 0, which is impossible. You
could also get this error message if you do not
enclose a filename in quotation marks.

File Already Exists. You are trying to RENAME
or COPY a file to a filename which Already
Exists.

Attempt to open a data file which is Already
Open.

Bad Record Number. You have used an impossible
record number in your PUT or GET line. Either it
is too low (less than 1) or too high (higher than the
maximum number of records the Computer can fit
on the disk). Use a different record number in the
PUT or GET line, or assign a smaller record
length in the OPEN line.

Bad Subscript. The subscripts in an array are out
of range. Use DIM to dimension the array. For
example, if you have A(12) in your program, with-
out a preceding DIM line which dimensions array
A for 12 or more elements, you will get this error.

Can’t continue. If you use the command CONT
and you are at the END of the program, you will
get this error.

Attempt to redimension an array. An array can
only be dimensioned once. For example, you can-
not have DIM A(12) and DIM A(50) in the same
program,

Disk Full. The Disk you are trying to store your
file on is Full. Use another disk.

This is either a Drive Number or Device Number
error.

Drive Number Error. You are using a drive num-
ber higher than 3. You will also get this error if
you do not specify a drive number when using
DSKINI or BACKUP. If you have only one drive
specify drive 0 with these two commands
(DSKINIO or BACKUP 0).

Device Number error. You are using more buffers
than the Computer has reserved. Use FILES to
reserve more. You might also get this error if you
use a nonexisting buffer number (such as buffer
—3) or omit the buffer (such as FIELD 1 AS A$
rather than FIELD #1, 1 AS AS).

DS

ER

FC

FD

FM

FN

FO

FS

ID

IE

IO

Direct Statement. There is a direct statement in
the data file. This could be caused if you load a
program with no line numbers.

Write or Input past End of Record (direct access
only). You are attempting to PUT more data in the
record than it can hold or INPUT more data than
it contains.

Illegal Function Call. This happens when you use
a parameter (number) with a BASIC word that is
out of range. For example SOUND (260,260) or
CLS(10) will cause this error. Also RIGHT$(S$,20),
when there are only 10 characters in S$, would
cause it. Other examples are a negative subscript,
such as A(—1), or a USR call before the address
has been POKEd in.

Bad File Data. This error occurs when you PRINT
data to a file, or INPUT data from the file, using
the wrong type of variable for the corresponding
data. For example, INPUT # 1, A, when the data
in the file is a string, causes this error.

Bad File Mode. You have specified the wrong file
mode (“O] “I)” or “D”) in your OPEN line for what
you are attempting to do. For example, you are
attempting to GET a record from a file OPENed
for “I” (use “D”) or WRITE data to a file OPENed
for “I” (use “O”).

Bad File Name. You used an unacceptable format
to name your file.

Field Overflow. The field length is longer than the
record length.

Bad File Structure. There is something wrong
with your disk file. Either the data was written
incorrectly or the directory track on the disk is
bad. See 10 for instructions on what to do.

Illegal Direct statement. You can only use INPUT
as a line in the program, not as a command line.

Input past End of file. Use EOF or LOF to check
to see when you’ve reached the end of the file.
When you have, CLOSE it.

Input/Output error. The Computer is having trou-
ble inputting or outputting information to the
disk.

83

APPENDIX G

LS

NE

NF

NO

OB

OoD

oM

84

(1) Make sure there is a disk inserted properly
in the indicated drive and the drive door is
closed.

(2) If you still get this error, there might be
something wrong with your disk. Try rein-
serting the disk first. Then try using a dif-
ferent one or reformatting it. (Remember
that reformatting a disk erases its contents.)

(3) If you still get this error, you probably have
a problem with the Computer System itself.
Call the Radio Shack Repair Center.

This error could also be caused by input/output
problems with another device, such as the tape
recorder.

String too Long. A string may only be 255
characters.

The Computer can’t find the disk file you want.
Check the disk’s directory to see if the file is there.
If you have more than one disk drive, you might
not have included the appropriate drive number
in the filename. If you are using COPY, KILL, or
RENAME (discussed in the next chapter), you
might have left off the extension.

NEXT without FOR. NEXT is being used without
a matching FOR statement. This error also occurs
when you have the NEXT lines reversed in a
nested loop.

File Not Open. You cannot input or output data to
a file until you have OPENed it.

Out of Buffer space. Use FILES to reserve more
space.

Out of Data. A READ was executed with insuffi-
cient DATA for it to READ. A DATA statement
may have been left out of the program.

Out of Memory. All available memory has been
used or reserved.

0Ss

ov

RG

SE

SN

ST

™

UL

VF

wP

Out of String Space. There is not enough space in
memory to do your string operations. Use CLEAR
at the beginning of your program to reserve more
string space.

Overflow. The number is too large for the Com-
puter to handle.

RETURN without GOSUB. A RETURN line is in
your program with no matching GOSUB.

Set to non-fielded string. The field in which you
are attempting to LSET or RSET data in has not
yet been FIELDed. Check the FIELD line.

Syntax error. This could result from a misspelled
command, incorrect punctuation, open parenthe-
sis, or an illegal character. Type the program line
or command over.

String formula too complex. A string operation
was too complex to handle. Break up the operation
into shorter steps.

Type Mismatch. This occurs when you try to
assign numeric data to a string variable (A$=3)
or string data to a numeric variable (A =
“DATA”). This could also occur if you do not
enclose a filename in quotes.

Undefined Line. You have a GOTO, GOSUB, or
other branching line in the program asking the
Computer to go to a nonexisting line number.

Verification. You will only get the error when you
have the VERIFY command ON and are writing
to a disk. The Computer is informing you that
there is a flaw in what it wrote. See IO for instruc-
tions on what to do.

Write Protected. You are trying to store informa-
tion on a disk which is Write Protected. Either
take the label off the write protect notch or use a
different disk. If your disk is not Write Protected,
then there is an input/output problem. See IO for
instructions on what to do about this.

APPENDIX H

DISK BASIC SUMMARY

This is a short summary on each new DISK BASIC “command” You may also use any of the EXTENDED COLOR
BASIC commands. (See Getting Started with Extended Color BASIC or the Color Computer Quick Reference Card
for a complete listing.)

The first line gives the format to use in typing the command. The italicized words represent “parameters” — values
which you can specify with the command.

This is the meaning of some of the parameters you may specify:

filename
All information stored on a disk must have a filename. The filename should be in this format:
namelextension:drive number
The name is mandatory. It must have 1 to 8 characters.
The extension is optional. It can have 1 to 3 characters.
The drive number is optional. If you do not use it when opening a disk file, the Computer will use drive 0 (or
the drive specified in the DRIVE command).

number
This may be a number (1, 5.3), a numeric variable (A, BL), a numeric function (ABS(3)), or a numeric operation
B5+3,A-7).

string
This may be characters (“B;” “STRING”), a string variable (A$, BL$), a string function (LEFT$(S$, 5)), or a string
operation (“"M” + AS$).

data
This may be number or string.

PAGES
BASIC WORD DISCUSSED
BACKUP source drive TO destination drive 13-15

Duplicates the contents of the source drive to the destination drive. If you only
have one drive, specify it as the source drive. The Computer will prompt you to
switch disks as it makes the backup copy. Executing this command will erase
memory.

BACKUP @ T0O 1 BACKUP @

CLOSE # buffer, ... 26-27
Closes communication to the buffers specified. (See OPEN for buffer numbers).

If you omit the buffer, the Computer will close all open files.
CLOSE =1 CLOSE #1, %2

COPY filenamel TO filename2 21
Copies the contents of filenamel to filename2. Each filename must include an
extension. (See format for filenames above.) Executing this command will erase
memory.
COPY "FILE/BAS" TO "NEWFILE/BAS"
COPY "ORG/DAT:@" TO "ORG/DAT:1"

85

APPENDIX H

PAGES
BASIC WORD DISCUSSED

CVN(string variable) 50
Converts a 5-byte coded string (created by MKN$) back to the number it
represents.

X=CUN(AS$)
DIRdrive number 11
Displays a directory of the disk in the drive number you specify. If you omit the
drive number, the Computer will use drive 0. (Unless you use the DRIVE com-
mand to change this default.) This is a typical directory display:

MYPROG BAS 2B 3

YOURPROG BAS DAl

HERDATA DATA 1 A5

USRPROG BIN 2B 2
The first column is the name of the file. The second column is its extension. The
third is the file type (0 = BASIC program, 1 =BASIC data file, 2=machine lan-
guage file, 3 =editor source file). The fourth column is the storage format
(A = ASCII, B =Binary). The fifth column is the file length in granules.

DIRG DIR
DRIVE drive number 11-15
Changes the drive default to the drive number you specify. If you do not use the
DRIVE command, the Computer will default to drive 0.

DRIVE 1
DSKINIdrive number 8
Formats a disk in the drive number you specify. Executing this command will
erase memory.

DSKINIQ DSKINIL
DSKIS$ drive number, track, sector, string variablel, string variable2 61-62
Inputs data from a certain sector within a certain ¢track on the disk in drive
number. The first 128 bytes of data are input into string variablel, the second
128 bytes into string variable2.

DSKI$ @+ 12+ 34 M$, N$
DSKOS$ drivenumber, track, sector, stringl, string2 61-62
Outputs string'data into the sector, track, and drive number you specify. stringl
is output into the first 128 bytes of the sector; string2 is output into the second
128 bytes. Used improperly, this command could garble the contents of the disk.

DSKO$ @+ 2+ 1» "FIRST DATA", "SECOND DATA"
EQF (buffer) 27
Returns a 0 if there is more data to be read in the buffer and a — 1 if there is no
more data in it. (See OPEN for buffer numbers.)

IF EOF(1) = -1 THEN CLOSE #|
FIELD # buffer, field size AS field name, ... 48-49

Organizes the space within a direct access buffer into fields. (See OPEN for

buffer numbers.) You specify the size and name of each field.
FIELD #1, 10 AS A%, 12 AS B%$, 5 AS C%

86

APPENDIX H

PAGES

BASIC WORD DISCUSSED

FILES buffer number, buffer size 54-55
Tells the Computer how many buffers to reserve in memory (buffer number),
and the total bytes to reserve for these buffers (buffer size). If you do not use
FILES, the Computer will reserve enough memory space for buffers 1 and 2,
and will reserve a total of 256 bytes for those buffers.
FILES 1. 1000 FILES 5

FREE(drive number) 20
Returns the number of free granules on the disk in the drive number you
specify.

PRINT FREE(@)

GET # buffer, record number 34-36
Gets the next record or the record number you specify, and puts it in the buffer.
(See OPEN for buffer numbers).

GET #1, 5 GET #2, 3

INPUT # buffer, variable name, ... 26-28
Inputs data from the buffer you specify and assigns each data item in the buffer
to the variable name you specify. (See OPEN for buffer numbers.)

INPUT #1:+ A%, B$%

KILL filename 20
Deletes the filename you specify from the disk directory. (See the format for file-
names above.) You must include the extension with the filename.

KILL "FILE/BAS" "WILL FILE/DAT:1"

LINE INPUT # buffer, data 42-43
Inputs a line (all the data up to the character) from the buffer you specify.
(See OPEN for buffer numbers).

LINE INPUT #1, X%

LOAD filename, R , 9
Loads the BASIC program file you specify from a disk into memory. By includ-
ing R, the Computer will RUN the program immediately after loading it. If
your filename does not have an extension, the Computer assumes it is BAS. (See
the format for filenames above.) Executing this command will erase memory.
LOAD "PROGRAM" . R LOAD "ACCTS/BAS:1"

LOADM filename, offset address 61
Loads a machine-language program file from disk. You can specify an offset
address to add to the program’s loading address. If your filename does not have
an extension, the Computer assumes it is BIN. (See the format for filenames
above.)
LOADM "PROG/BIN, 3522

LOC(buffer)
Returns the current record number of the buffer you specify. (See OPEN for
buffer numbers.)

PRINT LOC(1)

87

APPENDIX H

BASIC WORD

PAGES
DISCUSSED

LOF(buffer)
Returns the highest numbered record of the buffer you specify. (See OPEN for
buffer numbers.)

FOR R = 1 TO LOF(1)

LSET field name = data
Left justifies the data within the field name you specify. If the data is larger
than the field, the RIGHT characters will be truncated (chopped off).

LSET A% = "BANANAS" LSET B% = T%

MERGE filename, R
Loads a program file from disk and merges it with the existing program in
memory. If you include R, the Computer will immediately run the program

after merging it. (See the format for filenames above.) The disk program file

cannot be MERGEd unless it was SAVEd with the A (ASCII) option.
MERGE "SUB/BAS" MERGE "NEW", R

MKN$(number)

Converts a number to a 5-byte coded string, for storage in a formatted disk file.
LSET B% = MKN$(53B87891@)

OPEN “mode,” # buffer, filename, record length '
Opens a place in memory called a buffer which will communicate data to and
from a certain device. The buffers and the devices they communicate with are:
0—screen or printer (it is not necessary to open this buffer)
—1—tape recorder
—2—printer
1-15—disk drive
The communication modes you can use are:
I—inputting data from a sequential access file
O —Outputting data to a sequential access file
D —Inputting or outputting data to a direct access file
The filename you use should be in the format defined above. If you do not give
filename an extension, the Computer will give it the extension DAT.
If you are opening communication to a direct access file, you can also specify
the record length. If you don’t, the record length will be 256 bytes.
OPEN "D"» %1, "FILE", 15
OPEN "I", #2 “CHGE/DAT"

PRINT # buffer, data list
PRINTS the data to the buffer. (See OPEN for buffer numbers.) You may use a

comma or a semi-colon to separate each item in the data list.
PRINT #1, "DATA"

PRINT # buffer, USING format; data list
Prints data to the buffer using the format you specify. The format is a string
which can either specify a numerical or string format.
numerical formats may consist of any of the following:
sets the field of a number
formats a decimal point

88

37

48-50

53-54

50

26-28,
29-31,
33-38

27-28

45-46

APPENDIX H

PAGES
BASIC WORD DISCUSSED

, formats a comma every third number

ok fills leading spaces with asterisks

$ places $ ahead of number

$$ floating dollar sign

+ in first position, causes sign to be printed before number; in last

position causes sign to be printed after the number

«aeae prints number in exponential notation

- prints a.minus sign after negative numbers

PRINT USING #1, "s##,8"§ 53,78

PRINT USING #2, "#%$#.,8#-"§ -3,678
string formats may consist of either:

% % fields the length of a string.
1 1 prints the first character of the string

PRINT USING #1, "!"j "WHITE"

PRINT USING #1, "% 4"§ "YELLOW"
See Going Ahead With Extended Color BASIC for more information on the
formats.
PUT # buffer, record number 34
Assigns a record number to the data in the buffer. If you do not specify a record
number, the Computer will assign it to the current record. (See OPEN for buffer
numbers.)

PUT #24 3 PUT #1, 4
RENAME old filename TO new filename 19-20
Renames a file on disk to a new filename. You must specify the extension of both
filenames.

RENAME "MFILE/DAT:1" TO "BFILE/DAT:1"
RSET field name = data
Right justifies the data within the field name you specify. If the data is larger
than the field, the RIGHT characters will be truncated (the same as with
LSET).

RSET M$ = "SOAP"
RUN filename, R 9
Loads filename from disk and runs it. If R is included, all open files will remain
open. (See the format for filenames above.)

RUN "FILE’ RUN "PROG/BAS": R
SAVE filename, A 8
Saves filename on disk. If you do not give filename an extension, the Computer
will give it the extension BAS. By using the A option, your program will be
saved in ASCII format. (See the format for filenames above.)

SAVE "PROG/BAS" SAYE "TEST:1",s A
SAVEM filename, first address, last address, execution address 61

Saves filename — a machine language program beginning at first address (in
memory) and ending at last address. You also specify the address in which it
will be executed. If you do not give filename an extension, the Computer will
give it the extension BIN. (See the format for filenames above.)

SAVEM "FILE/BIN:1",+ &H5200 &HS5B00, &H5300

89

APPENDIX H

PAGES
BASIC WORD DISCUSSED
UNLOAD drive number 13
Closes any open files in the drive number you specify. If you don’t specify a drive
number the Computer will use drive 0 (or the drive number you specified with
DRIVE).
UNLOAD 8 UNLOAD
VERIFY ON 15
VERIFY OFF
Turns the verify function ON or OFF. When VERIFY is ON, the Computer will
verify all disk writes.
WRITE # buffer, data list 25-26,
Writes the data to the buffer you specify. (See OPEN for buffer numbers.) Use 34-35

a comma to separate each item in the data list.
WRITE #1+ A%+ B$» C

90

INDEX

SUBJECT PAGES
ASCIl .. 11,54, 59, 78, 79
BACKUP ... 13, 14, 84
Binary ... 11,54
Bits 7,57
Buffercciiiiiiiii.. 26, 29, 54, 55, 84
Bytes ... 7, 41,57, 58, 59
CLOSE ...t 26, 27,34, 84
Connections ...t e 1,2
COPY o 21,84
CRC .o e 58
CVN 50, 85
DCBPT ..ot 60
DCDRV .. e 60
DCODC ...t 60
DCSEC ... e 60
DCST A . . 60
DCTRK .. 60
DECIMALCODE 78,79
DestinationDisk 14
Direct Access File 33-38, 47, 48
DIR 11,85
Directory i 11, 25, 58
DirectoryEntries il 58
Directlnput 48
Disk

Careofdisko it 13-17

Formatting i i 7-8

Inserting ... 3
DiskDriveccviiiiii i 2,8
DiskSystemo i 1,57
Drive Number 11,85
DSKCON ... e 60, 60
DSKINIO ... e 8,14, 85
DSKIS ... i e 61,62
DSKOS ... 61, 62,85
EOF ..o 27,45, 85
ErrorMessages 16, 82, 83
Field 86
FIELDED INPUT i, 49
FileAllocationTablec..o ... 59
Filescoviiiiiii ... 8, 25, 54, 55, 58, 86
Filenameoooroee .. 10, 59, 84
Filename Extension 59, 84
Filenumberol 84
FORMAT i i 7,8,47
FREE e e 86
GET ... 34, 35, 36, 86
Granulecc i 58,59
Hexadecimal i, 57

SUBJECT PAGES
INPUT ... L 26, 27, 34, 36, 37, 42,
43, 61, 86
Interface 2
KILL e 20,86
LINEINPUT ...t 42, 43, 86
LIST . 9
LOAD ... i 9,86
LOADM ... 61,87
LOC .. 87
LOF 37,87
Logical Sector 59, 60
LSET ... 48, 49, 50, 87
Machine-Language 57, 60, 61
Memoryo 9
MERGEco i, 53, 54, 87
MKNS .. 50, 87
Multi-Disk Drives i, 20
NEW . 9
NumericalFormats 88
OPEN ... 26, 27, 34,87
OUTPUT ... e 26, 27, 61
Physical Sector i 59, 60
PRINT 19, 27, 43, 44, 45, 48, 88
PRINTFREEciiiiiiii ... 20
PRINTUSING, 45, 88
PUT e 34, 35, 36, 88
READ ... 54
Records 33, 34, 36, 37,55
RENAME i, 19, 88
RESET ... e 15
RMB .. e 60
RSET .. 89
RUN . 9,89
SalvageaDisk ...l 15
SAVE ... e 8,19, 89
SAVEM ... 61, 89
SeCtOr .. 7,57,58
Sequential AccessFile 29-31
SKIPFACTOR i 59
SourceDisk 14
Specifications 81
Start-up ... 2-3
Storing on Disk
ABASICProgram, 8
ADataFile il 23-39
A Machine-Language Program 61
Machine-Language Routine 60
StiNg .. 84
StringFormat 88
SystemControlsceeiii. 57

INDEX

SUBJECT PAGES
Technical Information 57-62
TraCKS .ottt e e 57,58
UNLOAD ... i 13, 89
VERIFYOFF i, 15, 89
VERIFYON i 15, 89
WRITE 25, 34, 35, 37, 42, 89
WRITEPROTECT ... 15

92

SERVICE POLICY

Radio Shack’s nationwide network of service facilities provides quick, conve-
nient, and reliable repair services for all of its computer products, in most
instances. Warranty service will be performed in accordance with Radio
Shack’s Limited Warranty. Non-warranty service will be provided at reasonable
parts and labor costs.

Because of the sensitivity of computer equipment, and the problems which can
result from improper servicing, the following limitations also apply to the
services offered by Radio Shack:

1.

If any of the warranty seals on any Radio Shack computer products are
broken, Radio Shack reserves the right to refuse to service the equipment or
to void any remaining warranty on the equipment.

If any Radio Shack computer equipment has been modified so that it is not
within manufacturer’s specifications, including, but not limited to, the in-
stallation of any non-Radio Shack parts, components, or replacement
boards, then Radio Shack reserves the right to refuse to service the equip-
ment, void any remaining warranty, remove and replace any non-Radio
Shack part found in the equipment, and perform whatever modifications are
necessary to return the equipment to original factory manufacturer's speci-
fications.

The cost for the labor and parts required to return the Radio Shack com-
puter equipment to original manufacturer’s specifications will be charged to
the customer in addition to the normal repair charge.

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A. CANADA
FORT WORTH, TEXAS 76102 BARRIE, ONTARIO, LAM4WS

TANDY CORPORATION

AUSTRALIA BELGIUM UNITED KINGDOM
91 KURRAJONG ROAD PARC INDUSTRIEL NANINNE BILSTON ROAD, WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7JN

8749470-BCo PRINTED IN U.S.A.

	Cover
	Table of Contents
	Chapter 1 - To Get Started
	Section I - The Disk
	Chapter 2 - Meet Your Disk
	Chapter 3 - A Garbled Up Disk
	Chapter 4 - You're the Boss

	Section II - The Disk Program
	Chapter 5 - One Thing at a Time
	Chapter 6 - Changing It All Around
	Chapter 7 - A More Direct Approach

	Section III - The Refined Disk Program
	Chapter 8 - How Much Can One Disk Hold
	Chapter 9 - Trimming the Fat Out of Direct Access
	Chapter 10 - Shuffling Disk Files
	Chapter 11 - Technical Information

	APPENDIXES
	Appendix A - Programming Exercise Answers
	Appendix B - Chapter Checkpoint Answers
	Appendix C - Sample Programs
	Appendix D - ASCII Character Codes
	Appendix E - Memory Map
	Appendix F - Specifications
	Appendix G - Error Messages
	Appendix H - Disk BASIC Summary

	Index

