
1tad1e lhaeK

CC@I1@ill
CC@~IPUJJTIIBill

IIDIT~IB ~W~TIIB~

•
Owners Manual & Programming Guide

TRS-B O CUSTOM MANUFACTURED IN U.S.A. BY RADIO SHACK, A DIVISION OF TANDY CORPORATION ---CCLCA DISK
MANUAL

Important Notice: Your computer must be off when you connect the
disk interface. Otherwise, you could damage the system.

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER. RETAIL STORE OR FROM A

RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
I. CUSTOMER OBLIGATIONS

A. CUSTOMER assumes full responsib1lIty that this Radio Shack computer hardware purchased (the ··Equipment'l and any copies of Radio
Shack software included with the Equipment or licensed separately (the ··software··) meets the specIficatIons. capacity, capabilities,
versatility, and other requirements of CUSTOMER.

B CUSTOMER assumes full responsib1l1ty for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation

II. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored Is free from manufacturing
defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warranty is void if the Equipment's case or cabinet has been opened. or if the Equipment or Software has been
subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period. the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole
expense RADIO SHACK has no obligation to replace or repair expendable items

B RADIO SHACK makes no warranty as to the design, capability. capacity, or suitability for use of the Software. except as provided in this
paragraph. Software is licensed on an "AS IS" basis. without warranty. The original CUSTOMER'S exclusive remedy. in the event of a
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store.
participating Radio Shack franchisee or Radio Shack dealer along with the sales document

C Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK.

D. Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above lImitation(s) may not apply to CUSTOMER.

Ill. LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
"EQUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO. ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE" IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE. USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE"

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR 'EQUIPMENT" OR "SOFTWARE"
INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and1or Software.
C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years

after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or
Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages. so the above limitation(s) or exclus1on(s) may
not apply to CUSTOMER.

IV. RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer. sub1ect to the following
provisions:
A. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.
B. Title to the medium on which the Software is recorded (cassette and or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to

the Software.
C CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this

function.
D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically

provided in this Software License. Customer is expressly prohibited from disassembling the Software.
E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or 1f add1t1onal copies are required in

the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for
TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each
one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER.

G. All copyright notices shall be retained on all copies of the Software.

V. APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and1or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER.

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and/or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK.

VI. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary
from state to state.

The FCC wants you to know:

This equipment generates and uses radio frequency energy. If it is not installed and used properly,
that is, in strict accordance with the manufacturer's instructions, it may cause interference to radio
and television reception. It has been type tested and found to comply with the limits for a Class B
computing device in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which
are designed to provide reasonable protection against such interference in a residential installa
tion. However, there is no guarantee that interference will not occur in a particular installation. If
this equipment does cause interference to radio or television reception, which can be determined by
turning the equipment off and on, the user is encouraged to try to correct the interference by one
or more of the following measures:

• reorient the receiving antenna
• relocate the computer with respect to the receiver
• move the computer away from the receiver
• plug the computer into a different outlet so that computer and receiver are on different branch

circuits.

If necessary, the user should consult the dealer or an experienced radio/ television technician for
additional suggestions. The user may find the following booklet prepared by the Federal Commu
nications Commission helpful: How to Identify and Resolve Radio-TV Interference Problems. This
booklet is available from the United States Government Printing Office, Washington, DC 20402,
Stock No. 004-000-0035-4.

TRS-80 Disk Extended Color
BASIC System Software: Copyright ©
1981 Tandy Corporation and Microsoft.

All rights reserved.

The system software in the disk system is retained in a read-only
memory (ROM) format. All portions of this system software,
whether in the ROM format or other source code format, and the
ROM circuitry, are copyrighted and are the proprietary and trade
secret information of Tandy Corporation and Microsoft. Use,
reproduction, or publication of any portion of this material, with
out the prior written authorization by Tandy Corporation, is
strictly prohibited.

Color Computer Disk System:
Copyright © 1981 Tandy Corporation,

Fort Worth, Texas 76102, U.S.A.
All rights reserved.

Reproduction or use, without express written permission from
Tandy Corporation, of any portion of this manual, is prohibited.
While reasonable efforts have been taken in the preparation of the
manual to assure its accuracy, Tandy Corporation assumes no
liability resulting from any errors or omissions in this manual or
from the use of the information obtained herein.

Printed in the United States of America
10 9 8 7 6 5 4 3 2

WHY A DISK IS FAST

A disk is for storing your information. The precise
term for it is a "mini-diskette;• but in this book we'll
just call it a disk. It is far superior to tape, the other
alternative.

A disk is especially designed to "file" your infor
mation so the Computer can immediately get the
information you want. For you, this means storing
and retrieving information - which takes a long
time on tape - now can be done quickly and
efficiently.

ABOUT THIS BOOK

This book shows how to read and write on a disk. When
we wrote it, we had three different groups of people in
mind.

The first group includes all of you accomplished Radio
Shack programmers. We are referring, of course, to
those of you who learned to program by reading Getting
Started with Color BASIC and Going Ahead with
Extended Color BASIC. You'll find Sections I and II of
this book another delightful experience. If you're espe
cially ambitious, you'll also enjoy Section III.

How about those of you who have never programmed
and intend to use application programs written by
Radio Shack or someone else? You're the second
group. Read Chapter 1, "To Get Started:' Then, if you're
interested in and want to take full advantage of your
disk system, go on to Section I, "The Disk:' You don't
need to know anything about programming to under
stand it.

If you don't belong to either of these two groups, you
probably already know how to program disk systems.
Read Chapter 1 first to find out how to connect your sys
tem. Then, go straight to the "BASIC Summary" at the
end of the book. Everything is summarized there with
page number references, for the things you want to read
more about.

TABLE OF CONTENTS

Chapter 11 To Get Started . 1

SECTION I. The Disk

Chapter 2/ Meet Your Disk . 7
Chapter 31 A Garbled Up Disk 13
Chapter 41 You're the Boss 19

SECTION II. The Disk Program

Chapter 5/ One Thing at a Time . 25
(Sequential Access to a File)

Chapter 6/ Changing It All Around 29
(Updating a Sequential Access File)

Chapter 71 A More Direct Approach 33
(Direct Access to a File)

SECTION III. The Refined Disk Program

Chapter 8/ How Much Can One Disk Hold? 41
(What the Computer Writes in a Disk File)

Chapter 9/ Trimming the Fat Out of Direct Access 4 7
(Formatting a Direct Access File)

Chapter 10/ Shuffling Disk Files 53
(Merging Programs, Using Many File Buffers)

Chapter 11/ Technical Information 57
(Machine-Language Input/Output)

Appendixes

Appendix Al Programming Exercise Answers . 64
Appendix Bl Chapter Checkpoint Answers 66
Appendix Cl Sample Programs 68
Appendix DI ASCII Character Codes 79
Appendix El Memory Map ... 81
Appendix Fl Specifications .. 82
Appendix GI Error Messages 83
Appendix HI BASIC Summary 85

(

,J ..
JI

1

TO GET STARTED

Before you install your Disk System, you need to
connect your Color Computer to the T.V. If you
haven't done it yet, refer to the Color Computer
Operation Manual.

A. CONNECT DISK SYSTEM

Your Disk System is easy to connect. Do it
before you turn on your Computer by simply
plugging in all the parts:

#- - , , -.. , , .. '
, ,' ' , ' . . ,t:::----........ ...

: - - --1
• I I
t I I
I I I

I I
I I
I I

- .. ._ • I _. _____ _

Note: the dotted lines represent the connection of additional add-on driue .

2

TO GET STARTED

1. Connect the Disk Interface to the plug
in the opening of your Computer.

IMPORTANT NOTICE: YOUR COM
PUTER MUST BE OFF WHEN YOU
CONNECT THE DISK INTERFACE.
OTHERWISE, YOU COULD DAMAGE
THE SYSTEM.

2. Connect Plug A of the Disk Cable to the
Disk Interface.

3. Connect Plug B of your Disk Cable to
the plug on back of your Disk Drive.
Plug in the power cord to a standard
(120 V) electrical outlet.

If You Have Additional
Disk Drives

If you have more than one disk drive, do
step 3 differently. Connect the 26-3023
Drive to the inside plug (Plug B). If you
have more 26-3023 Drives and an expanded
cable, connect these Drives to inside plugs
also. The 26-3029 Drive must be connected
to the last plug in the series.

You'll also need to number your Drives.
Number them from the inside out, starting
with Drive 0. The Drive connected to Plug
B is drive number 0, the Drive connected to
Plug C is drive number 1, etc.

B. POWER IT UP

Since your Disk System has several parts, you
need to turn ON several buttons to power-up
the entire system:

• Turn ON your television set.

• Select Channel 3 or 4.

• Set the antenna switch on the T.V. to
COMPUTER.

• Turn ON the Computer. (The power but
ton is on the back left-hand side of your
keyboard.)

TO GET STARTED

• Turn ON the Disk Drives. (The power
buttons are on the rear.)

Have you turned ON all the buttons? This
message should appear on your screen:

DISK EXTENDED COLOR BASIC u.~
COPYRIGHT (Cl 1881 BY TAND Y
UNDER LICENSE FROM MICROSOFT

(v.r. is two numbers specifying which ver sion
and release you have.)

If not, turn off the Computer, check your con
nections, and power it up again.

C. INSERT A DISK

After powering the system up, you can insert
a disk. If you plan to go through Section I, use
the blank, unformatted disk which comes
with your disk system. Otherwise, you can
insert your "application program" disk. (If

you have more than one drive, insert, the disk
in drive 0).

· Open the DRIVE DOOR.

• Position the disk with the notch on top,
as we show in the picture above.

• Gently insert the disk until it stops.

• Close the DRIVE DOOR.

Note: You cannot use a blank disk until you "format"
it. The next chapter shows how.

Now that your system is connected and powered
up, you're ready to begin. Begin what? Well, if you
want to know how to t ake full advantage of your
disk system, we'd like you to read Section I. You'll
find a lot of helpful information there.

If you're in a h urry to r un your application pro
gram , that's O.K., too. But please read these
guidelines first. We want your disks to last a long
time.

• When storing the disk, keep it in its storage
envelope

• Do not turn the system ON or OFF with the
disk in the drive.

• Keep disks away from magnetic fields
(transformers, AC motors, magnets, TVs,
radios, etc.)

• Handle disks by the jacket only. Don't touch
any of the exposed surfaces, even to dust
them.

• Keep disks out of direct sunlight and away
from heat.

• Avoid contamination of disks with cigarette
ashes, dust, or other particles.

• Use a felt-tipped pen only to write on the
disk label.

• Store disks upright in a vertical file.

Note: Your digk drives should be on the right side of
your television set.

IMPORTANT NOTE!
If you have an earlier model of the Color Computer, the disk system might cause
interference on your screen. If so, bring the computer to a Radio Shack Repair
Center for additional grounding connections. (There will be no charge for t his
service.)

3

SECTION I

A disk is like a filing system. Everything on it is
organized.

This makes disks easy to work with. In this section,
we'll show you how your Computer organizes
everything on your disk. and how you can take
advantage of this.

We invite all of you to read this section. You don't
need to know anything about computers to under•
stand it.

5

I ·-·
_J
' I
-· I

• 6

l))SK Dl~ECTORY

0

' I

L ..

l_ __

L_

0

•:
•• :....

MEET YOUR DISK

A LOOK INSIDE OF IT

Although your disk looks like a record, it is really
more like a multitude of tiny magnets. One disk
can hold more than a million magnetic charges.
1,290,240 of them are for your information. That's
what we mean when we say a disk will hold
1,290,240 bits or 161,280 bytes of information
(there are eight bits in a byte).

Some of these bits are magnetically charged and
some aren't. The pattern formed by these mag
netic charges is what's important. It forms a code
which the Computer can read.

With more than a million of these bits on a disk,
you can appreciate how your Computer must orga
nize them in order to find anything. It does this by
building a massive disk filing system. First it cre
ates the file cabinets by dividing your disk into
"tracks'.' Then it puts drawers in the cabinets by
dividing each track into "sectors'.' Then . . . we're
not finished yet . . . each sector is divided into bytes
and each byte is divided into bits.

Note: To be precise, there are .15 tracks on,, disk. 18
sectors in each track. 256 bytes in each sector, and 8
btls in each byte.

After creating this filing system, the Computer
puts a master directory on the disk. There, it
indexes where everything is stored. Whenever it
wants to find something - a program, a mailing
list, your letters-it uses the directory to find the
tracks and sectors where it is stored. It can then
go directly to that spot.

This whole filing system is, of course, what makes
the disk system so powerful. You can quickly find
anything you have stored on your disk.

Putting this filing system on your disk is called
"formatting" it. The last thing we had you do in
Chapter 1 was to insert an "unformatted" disk.
Before you can use it, you must format it into
tracks and sectors.

FORMATIING A DISK

How do you format a disk? Well ... why not just tell
your Computer to do it? If you went through the

7

MEET YOUR DISK

instructions in the last chapter, you have already
powered-up your system and inserted an "unfor
matted" disk. Be sure you have your DRIVE
DOOR closed.

Now, type any letters and press the (ENTER) key so
that:

OK

is the last line on your screen. (OK means "OK,
I'm ready to do something'.') Now type what you
want it to do. Type:

OSK INI121

and press the (ENTER) key. Your Computer might
print ?SN ERROR. If so, don't let this bother you.
This "error" simply means you typed the com
mand incorrectly. Type it again.

Whenever anything goes wrong, the Computer
will let you know immediately with an error mes
sage. This way you can correct the error right
away. If you get any other error message besides
SN, look it up in Appendix G. It lists all the error
messages and what to do about them.

After typing OSK IN I 0 (ENTER), you'll hear some
noises from your disk drive and its red light will
come on. Sounds promising .. .

After about 40 seconds of noises, your Computer
will then print OK. It has finished formatting the
disk. You can now store your information.

Remember that you cannot store anything on an
unformatted disk. Whenever you get a new, unfor
matted disk, you need to format it before you can
use it.

Later on, you might not remember if a disk has
been formatted. A quick way to find out is to check
the directory. (See "Checking the Master Direc
tory" at the end of this Chapter.) If you get an
"error message;' the disk is not formatted.

Note: It does no harm to reformat a disk. This is a
common way to erase everything on it.

If you have more than one disk drive, you can for
mat a disk in one of the other drives by substitut-

8

ing the appropriate drive number for drive 0. For
example, DSKINil formats the disk in drive 1.

PU'ITING A FILE ON YOUR DiSK

A disk file can contain any kind of information -
a program, a mailing list, an essay, some checks.
We'll make your first file contain a BASIC pro
gram, since it's the simplest thing to store.

If you don't know how to program in BASIC, type
this program anyway. Type each line exactly as it
is shown below. Press the (ENTER) key after typing
each line. Type:

10 PRINT "STORE ME IN A DISK FILE" (ENTER)
20 PR I NT "AND YOU' LL NEVER LOSE ME" (ENTER)

Finished? Now that you've typed the program into
your Computer's "memory;' you can put it on a
disk. To do this, we'll call it a file and name the file
"SIMPLE/PRO" (all files have a name). To store it,
type:

SAl.!E "SIMPLE / PRO" (ENTER)

Once you press the (ENTER) key, your disk drive will
whirr and grind some and the red light on it will
come on. Your Computer is:

• finding a place on the disk to store "SIMPLE/
PRO"

• telling the directory where "SIMPLE/PRO" will
be stored.

• storing "SIMPLE/PRO" on your disk.

Note: Th;J Computer stores «SIMPLE/PRO" th;J same
way it stores everything else - in a cod.e of magnetic
charges.

At this point, we must warn you about something.
Do not remove your disk while you see the red
light on. This confuses the Computer. It might dis
tort the contents, not only of the file you are pres
ently storing, but of other things you have stored
on the disk.

When your Computer finishes storing "SIMPLE/
PRO;' it prints the OK message on your screen.

MEET YOUR DISK

Note: Upgrading your tape system? Note the differ
ence: SA VE stores a program on disk; CSA VE stores
it on tape.

MEMORY VS DISK STORAGE

To tho:;e of you new to computers, we would like to
expound a li ttle on computer "memory'.' If you
already know what it is, skip down to the next
heading- "Loading a File from Disk'.'

Whenever you type a BASIC program line and
press (ENTER), the Computer automatically puts it
in its memory. Once it's in memory, you can do
things with it. For example, type:

RUN (ENTER)

Your Computer PRINTs:

STORE ME IN A DISK FI LE
AND YOU 'LL NEVER LOSE ME

To list the program as you have it above, type:

L IS T (ENTER)

Memory is where the Computer keeps track of
everything you tell it. Once you put your infor
mation in its memory, the Computer can print it,
rearrange it, combine it, or any of the other things
you want done with it.

Later on, you'll probably want to put other things,
such as your mailing list, in memory. To do this,
you'll need to write or purchase a program written
especially for that application. This "application
program" will get the Computer to put the infor
mation you type into memory.

The important thing to remember about memory
is that turning off your Computer erases it. Once
memory has been erased, there's no way to recover
it. The only way to keep a permanent copy of what
you've typed into memory is by storing it on a disk
(or tape).

LOADING A FILE FROM DISK

Type NEW (ENTER) to erase everything in your Com
puter's memory. To make sure everything's erased,
you can type one or both of these commands:

RUN (ENTER)
L I ST (ENTER)

Although NEW erased the program from memory,
"SIMPLE/PRO" is still safely stored on your disk.
You can put "SIMPLE/PRO" back into memory
a nytime you want by "loading" it from disk. To do
this , type LOAD "SIMPLE /PRO" (ENTER).

Again, you'll hear some promising noises from
your disk drive. The Computer is:

• reading the directory to find where "SIMPLE/
PRO" is stored.

• going to that location on the disk and reading the
contents of "SIMPLE/PRO'.'

• putting "SIMPLE/PRO" into its memory.

You can now type one or both of these commands
to verify that "SIMPLE/PRO" is in memory:

LI ST (ENTER)
RUN (ENTER)

MORE ABOUT MEMORY VS DISK
STORAGE

If you're still a little fuzzy about what's in memory
and what's on your disk, try this exercise. You've

9

MEET YOUR DISK

just LOADed a program called "SIMPLE/PRO"
into memory, right? Change it by typing:

20 PR I NT "WITH TH IS CHANGE" (ENTER)

LIST the program again to see that the Computer
has registered the changed line 20 in its memory:

10 PRINT "STORE ME IN A DISK FILE"
20 PRINT "WITH THIS CHANGE"

Store it in a different file by typing SA 1,1 E
II CHA NGE II (ENTER) . . .

Hear the whirring and grinding from your disk
drive? You have t wo disk files now: "SIMPLE/
PRO" and "CHANGE'.' What do you think each of
them contains? 'lry LOADing and then LISTing
both of them.

Note: You don't need to type NEW <I!mBl before LOAD
ing a new program into memory. The Computer will
automatically erase everything you presently have in
memory before LOADing the new program.

??

"CHANGE" contains the changed program:

10 PRI NT "STORE ME IN A DISK FI LE"
20 PRI NT "WITH THIS CHANGE "

However, "SIMPLE/PRO" still contains the old
program:

10 PRI NT "STORE ME IN A DISK FILE"
20 PRINT "A ND YOU'LL NEVER LOSE ME"

The only way to change a disk file is by ... well,
you answer it. How can you make the file "SIM
PLE/PRO" contain:

10 PR INT "CHAN GED FILE"

??

Answer:

Type:

10

NEW (ENTER)

1 fll PR I NT "CHANGED FI LE" (ENTER)
SAlJE "SIMPLE/PRO" (ENTER)

FILENAMES

You have already used one filename:

"SIMPLE/PRO"

If you did our memory vs. disk storage exercise,
you've used a second filename:

"CHANGE"

We gave the name "SIMPLE" an "extension" -
"PRO:' You must g ive everything you store a
name. The extension is up to you. It's optional.

What names can you give your files? Anything
you want, as long as you follow these rules:

1. The na me may have no more than eight
characters.

2. If you give it an extension, the extension may
have no more than three characters.

3. There must be a slash (/) or a period (.) between
the name and the extension.

Fair enough? Good.

Note: You may use any characters in the filename
except a colon{:) or a zero (OJ. You can only use a
slash (') or a period (.) to separate the name from the
extension.

FILENAMES WHEN YOU HA VE
MORE THAN ONE DRIVE

If you have more than one disk drive, you can add
the drive number to your fi lename. (Remember,
you numbered all of your drives in Chapter 1). For
example:

LOAD "SIMPLE /PRO : ! "

MEET YOUR DISK

LOADs "SIMPLE/PRO" from the disk in drive
number 1. Or

SAVE "CHANGE: 1"

stores "CHANGE" on the disk in drive number 1.
If you don't include a drive number, the Computer
assumes you want it to use drive number 0.

CHECKING THE MASTER
DIRECTORY

As we've said earlier, a disk has a master directory
which the Computer can use to find out what's on
the disk. If the Computer can use it, you can use
it, too. Type DIR (ENTER!.

The Computer prints information on all the files
you have stored on your disk. If the only files
you 've stored so far are "SIMPLE/PRO" and
"CHANGE;' the Computer prints this:

SIMPLE
CHANGE

PRO Ill B 1
BAS Ill B 1

The first and second columns list the filename.
The first is the name and the second is the exten
sion. Notice that even though you did not assign
"CHANGE" an extension when you stored it, the
Computer still assigned it the extension "BAS'.'

The Computer prefers for all filenames to have an
extension. If you do not give a file an extension
when you store it, the Computer will automat i
cally assign one of these extensions:

"BAS" if it 's a BASIC program
"DAT" if it's data (such as names, numbers, etc.)
"BIN" if it's a machine-language program)

Note: A ma.chine-language program. is a highly tech
nical program which talks directly to the Computer.

The next three columns contain information
which is primarily for the use of technical pro
grammers. Interested? Then read on . . .

The third column lists the type of file it is:

0 BASIC program
1 data created by a BASIC program
2 data created by a machine-language program
3 a source program created by an editor/

assembler

Note: An editor/assembler is a program you can buy
to help you create a ma.chine-language program.

The fourth column lists the format the file is
stored in:

A ASCII
B Binary

We'll explain the meaning of this in Chapter 10.

The fifth column shows how many "granules" each
file consumes. "SIMPLE/PRO" and "CHANGE/
BAS" consume one granule each. (The Computer
uses "granules" to allocate file space on a disk. A
disk contains 68 of these "granules").

If you have disks inserted and formatted in other
drives, you can check their directories also. For
instance D I R 1 CENTER) displays the directory of the
disk in drive number 1.

Impressed? You'll be even more impressed when
you see how fast you can SA VE and LOAD long
programs. But before you get too involved, please
read the next chapter. It'll help ensure that your
experience with your Disk System is smooth and
enjoyable.

Note: To stop the directory from scrolling, press the
:mnD and (ID keys simultaneously. Then press
(m!K). ----------------'

0 CHAPTER CHECKPOINT

1. Why can't you store things on an unformat-
ted disk?

2. What is the disk's directory?
3. What is a disk IUe?
4. What is the difference between what's in

memory and what's on the disk?
5. How do you change the contents of a disk

file?

Do you like quizzes? The answers are in
AppendixB.

11

A GARBLED UP DISK

With more than a million magnetic charges on a
disk, you can see why it is so delicate. Any small
particle such as a piece of dust or a cigarette ash
could distort its contents. A scratch could ruin it.
That's why we suggest that you keep the disk in
its envelope when you're not using it- preferably
upright in a dust-free container - and only use a
felt-tipped pen when labeling it.

To help protect the disk, we encased most of it in
a black plastic container. However, as you can see,
we weren't able to cover the entire disk. The mid
dle section and two other small areas are exposed
so the Computer can read and write to it. Be care
ful not to touch the exposed areas, not even to dust
them. They scratch very easily.

Since the disk is made up of magnetic charges,
putting it next to another magnetic device, such as
your television set, could completely rearrange its
magnetic code. Your information would be lost.
Heat and sunlight could have the same effect. The
same goes for turning your Computer ON or OFF
while the disk is in its drive.

One more thing ... If you're in the middle of run
ning a disk program, and need to switch disks, we
recommend that you type this command:

UNLOAD (ENTER)

before you switch disks. This way the Computer
can put its closing information on the proper disk.
If you don't type this command, the Computer
might put this information on the wrong disk and
garble the contents of both disks.

Note for BASIC programmers: All open files must
be closed before switching disks. UNLOAD closes all
open files.

BACK IT UP

All of this might sound a little gloomy to you, even
if you are a careful person. This is why we've
included a command called BACKUP. BACKUP
will enable you to make a duplicate or "backup"
copy of any of your disks by copying the contents
of one disk to another.

13

A GARBLED UP DISK

We suggest you regularly make a backup copy of
any disk which contains importan t programs or
data. This way you won't have to worry about los
ing them.

Also, since a disk can actually get worn out from
too much use, it's a good idea to make a backup
copy of an old disk on a new, unused disk. Then,
when t he Computer begins having its problems
reading and writing to the disk, you can use your
backup copy.

Want to make a backup copy? Get your two disks
ready:

1. Your "source" disk - This is the disk you want
to duplicate. Use any disk which has files stored
on it . If you're just getting started , use the disk
which you worked with in Chapter 2.

2. Your "destination" disk - This is the disk which
you want to be your duplicate copy. Use a blank
disk or, if you've been using your disk system
for a while, use any disk which contains fi les
you won't need anymore.

Note: Everything previously on your destination disk
will be erased. It will be replaced with all the data on
your source disk.

If your "destinat ion" disk is bla nk, you must
first format it. Remember how? Insert it in your
disk drive , shut the door, and type DSK IN IO

(ENTER).

Now make the backup copy. The procedure you fol
low depends on whether you have one disk drive
or several.

Backup with One Disk Drive

If you have only one disk drive, it will take you
about five minutes to make a backup copy. Insert
your "source" disk in your disk drive and shut the
DRIVE DOOR. Type DIR !ENTER! to see which files
you will be copying.

Now start the backup procedures. Type:

BACKUP 0 (ENTER)

14

After making some noise while it reads a port ion
of your "source" disk, the Computer will print:

I NSERT DESTINAT I ON DISKETTE AND PRESS (ENTER)

Take the "source" disk out and insert the "desti
nation" disk. Shut the DRIVE DOOR. Then press
(ENTEID . You'll hear some more noise while the
Computer "writes" some things on the "destina
tion" disk. Then it will print:

I NSERT SOURCE DISKETTE AND PRESS (ENTER)

The Computer will have you continue switching
disks until you have copied everything from your
source disk. During this process, make sure you
insert the correct disk and insert it properly. When
you've finished, the Computer will pr int the OK
message on your screen.

To make s ure BACKUP worked, you can insert
your "destination" disk and type DI R (ENTER).

Backup with More Than One Disk
Drive

If you have more than one disk drive, backing up
a dis k is much easier. It will take a bout two
minutes.

Insert your "source" disk in drive 0 and your "des
t ination" disk in drive 1 (Chapter 1 shows how to
label your drives). Then type:

BACKUP 0 TO 1 (ENTER)

You will hear some noise as the Computer backs
up the contents of the disk in drive Oto the disk in
drive 1. When it's finished, it will print the OK mes
sage. You can then make sure BACKUP worked
by typing DIR 1 (ENTER).

You can use different drives, if you want. For
instance:

BACKUP 1 TO 0 (ENTER)

backs up the contents of the disk in drive 1 to the
one in drive 0.

A GARBLED UP DISK

If You have Problems During
Backup

If you get an error message while you're backing
up a disk, it's probably because you've inserted the
disk incorrectly or there is something wrong with
the disk. At the end of this chapter, we discuss
error messages to help you determine t he prob
lem. If you have a bad disk, you will need to try
BACKUP with another disk.

After determining the problem, press the RESET
button to get out of BACKUP. Then start t he
BACKUP procedure all over again.

Not,e: The RESET button is on the right-hand rear
of.your Computer (when you're facing it).

"WRITE" PROTECT IT

"Write-protecting" is one more way to protect your
disk files. Let's assume you have a disk which con
tains some valuable information - such as a good
program - which you don't plan to change. You
plan to "read" its contents daily, by loading the
program into memory, yet you never plan to
"write" (store information) on it.

Putting a little gummed label on the WRITE
PROTECT NOTCH will enable the Computer to
read the disk, but not to write on it. Any gummed
label will do. There is one which comes with your
new, unformatted disk:

SALVAGE IT

We mentioned earlier that a disk doesn't live for
ever. Before you throw away an old disk , though,
see if you can salvage it . You may be able to do this
by formatting it all over again as if it were a blank
disk.

Although this might salvage the disk, it will not
salvage the contents of the disk. By reformatting
the disk, you will erase everything on it. However,
it will save you the expense of purchasing a new
disk.

If you get an IO error while trying to reformat it
(see "Error Messages" at the end of this chapter),
the disk has probably reached its limit. If you have
a "bulk-eraser;' you can try "bulk-erasing" the
disk and reformatting it. Ot herwise, throw i t
away and use another one.

Note: If you ha()e more than one disk driue, you might
be able to COPY some of the files on a bad disk to a
good disk. We discuss COPY in the nat chapter.

VERIFY IT

The Computer "writes" data on your disk at a very
fast speed . In almost all cases, it can do this
flawlessly.

There might be t imes when you want to be abso
lutely certain that there are no flaws in what the
Computer is writing. If so, you can turn ON the
Computer's VERIFY command. To do this , type:

IJER I FY ON (ENTER)

Now the Computer will notify you, whenever it is
writing on a disk, if there are any flaws in what it
is writing. The only catch is that it will take twice
as long for the Computer to write.

For example , let 's a ssum e you now make a
BACKUP copy of your di sk. The Computer will
take twice as long doing this, but will notify you
if there is a flaw in the BACKUP copy.

This VERIFY command will remain ON until you
turn it off. To do this, type:

~JERI FY OFF (ENTER)

15

A GARBLED UP DISK

WHEN THINGS GO WRONG

Your Computer realizes nobody's perfect. When
you make a mistake, it'll try to notify you imme
diately and tell you what kind of "error" you
made.

You've probably already been notified that you
made a "SN ERROR:' If you haven't, type DI IR

(ENTER) deliberately mispelling DIR.

SN means "Syntax" error. It's the Computer's way
of telling you that "DIIR" doesn't make sense to it.
The word is not in its vocabulary. An SN error
usually means you made a typographical error.

Here are some other error messages you're likely
to get with your disk system:

AE - You are trying to RENAME a file (discussed
in the next chapter) to a filename which
Already Exists.

DF -The Disk you are trying to store your file on
is Full. Use another disk.

DN - You are using a Drive Number higher than
3. You will also get this error if you do not
specify a drive number when using DSKINI
or BACKUP. If you have only one drive
specify drive O with these two commands
(DSKINIO or BACKUP 0)

FN - You used an unacceptable format to name
your file. The last Chapter explains which
File Names are acceptable to the Computer.

FS -There is something wrong with your disk
file. See IO for instructions on what to do.

/0 -Technically, this means you have asked the
Computer to divide a number by 0, which is
impossible. However, you might also get
this error when you don't enclose a filename
in quotation marks.

16

Io -The Computer is having trouble Inputting
or Outputting information to the disk.

(1) Make sure there is a disk inserted
properly in the indicated drive.and the
drive door is closed.

(2) If you still get this error, there might
be something wrong with your disk.
Try reinserting the disk first. Then try
using a different one or reformatting
it. (Remember that reformatting a
disk erases its contents.)

(3) If you still get this error, you probably
have a problem with the Computer
System itself. Call the Radio Shack
Repair Center.

NE -The Computer can't find the disk file you
want. Check the disk's directory to see if the
file is there. If you have more than one disk
drive, you might not have included the
appropriate drive number in the filename. If
you are using COPY, KILL, or RENAME
(discussed in the next chapter), you might
have left off the extension.

TM -Technically this is caused by a program
which mixes "strings" with "numbers:'
However, you might get this error if you
don't enclose a filename in quotation marks.

tJF - You will only get the error when you have
the VERIFY command ON and are writing
to a disk. The Computer is informing you
that there is a flaw in what it wrote. See IO
for instructions on what to do.

WP - You are trying to store information on a disk
which is Write Protected. Either take the
label off the write protect notch or use a dif
ferent disk. If your disk is not Write Pro
tected, then there is an input/output prob
lem. See IO for instructions on what to do
about this.

All other errors you might get are errors in the
program you are using. If you did not write the
program and get one of these errors, you need to
contact the people who wrote it. If you did write it,
check Appendix G, where you'll find an explana
tion of all the error messages.

A GARBLED UP DISK

Caring for your disk might seem a little awkward
at first. It should. You've spent most of your life
protecting your papers and now you're dealing
with a different medium.

After awhile, t hough, protecting your disk from
dust and magnetic devices will seem as natura l to
you as protecting your papers from a strong gust
of wind. And once you get used to keeping your
disk "ungarbled;' you'll never want to go back to
pencils and paper again (we hope).

0 CHAPTER CHECKPOINT

1. Why shouldn't you turn the Computer ON
or OFF while the disk is in its drive?

Z. What type of pen can you use to write on
the disk's label?

3. What are error messages?
4. What does write-protect mean? How do

you do it?
6. How do you backup a disk?

17

'

' \
--=- .

\ I --------. . - .

I \

,::!

YOU'RE THE BOSS

Thanks to your disk filing system, you are able to
command the Computer to do a lot of very helpful
things. For example, you can rename a file. If
you've taken your formatted disk out, re-insert it.

Note: Can't remember if your disk's formatted?
Check the directory by typing DIR (ERIEI!) for DIR0 or
DIR! if you have more than one drive!.

Type this to put a file on your disk:

10 PRINT "THIS IS A FILE" (ENTER)
SAl.lE "ORIG I NAL/NAM" (ENTER)

Check the directory to see that the program file is
stored on your disk under the name "ORIGINAL/
NAM" ... Now rename it. 'lype:

RENA ME "ORIGINAL/NAM" TO "NEW/NAM" (ENTER)

Hear the disk drive working? Check your DIRec
tory again. If you'd like, LOAD and LIST "NEW/
NAM'.' The program file has simply been renamed.
Everything else is the same.

RENAME is easy to use, but there is one thing you
need to remember. Save a file without an exten
sion and then try to rename it. 'lype:

10 PRINT "FILE NUMBER TWO" (ENTER)
SAl.J E "AF I LE" (ENTER)
RENAME "AF I LE" TO "BF I LE" (ENTER)

The Computer gives you an NE error. This means
the Computer can't find the fi le.

When you RENAME a file, you must type in the
complete name of the file so that the Computer can
find it. This includes the name and the extension.
As we discussed in Chapter 2, whenever you SAVE
a file the Computer will make sure it has an exten
sion. If you don't assign it one, the Computer will.

You can check the directory to find out the exten
sion of "AFILE'.' Then RENAME it. 'lype:

RENAM E "AFILE/BAS" TO "BFILE/BAS " (ENTER)

If you're renaming a program fi le, be sure that
your new fi lename has an extension. In other

19

YOU'RE THE BOSS

words, don't type RENAME "AFILE/BAS" TO "BFILE "
(ENTERl. The Computer would RENAME the file,
however "BFILE" would not have an extension.
This would cause a problem when you try to
LOAD "BFILE;' since all files you LOAD must
have an extension.

This might seem to conflict with what we said
above. You were able to SA VE "AFILE" without
assigning it an extension because the Computer
automatically assigned it one when it saved it.
RENAME works differently. The Computer won't
automatically assign an extension to a program
you rename.

Note: There is one way to LOAD HBFILE" without an
extension. This is by indicating that there is no exten
sion by typing LOAD "!!FILE/" llmB). This is awk
ward. That's why we suggest, when renaming a file,
you always assign it an extension.

Multi-Disk Drives

You can RENAME a file on another disk drive,
simply by typing the appropriate drive number.
Insert a formatted disk in drive 1 (if it's not
already inserted). Store a file on it:

10 PRINT "A CCOUNTI NG" (ENTER)
SAt.JE "OLDACC/DAT: 1" (ENTER)

and RENAME it by typing:

RE NAME "OLDACC/DAT:1" TO "NEWACC/DAT:l"
(ENTER)

Note: If you want your renamed file on a different
drive, you can't use RENAME. Use COPY.

ALMOST OUT OF DISK SPACE?

Sooner or later, you'll want to know how much
space you have left on your disk. Type:

PRINT FREE (0l (ENTER)

The Computer prints the number of FREE "gran
ules" remaining on your disk.

There are 68 granules in all. If the Computer tells
you that you have only one granule FREE, you'd

20

better do one of the following: start using another
disk or "KILL" some of your disk files.

KILLing a disk file does just what the name
implies. For example, if you put ''CHANGE" on
your disk in Chapter 2, type:

KILL "CHANGE /BA S" (ENTER)

Check your directory and the FREE space remain
ing on your disk. "CHANGE/BAS" is no longer on
your disk. The space it occupied is now FREE for
new files.

Notice, we had to include CHANGE's extension,
"BAS;' in order to KILL it. The Computer insists
you type the complete filename as one extra pre
caution. It doesn't want to KILL a file you don't
want destroyed.

Note: Want to get very technical? The data will still
exist on the disk after you KILL a file. However, the
Computer won't know it's there because KILL deletes
all reference to it in the disk's directory. Therefore,
you'll no longer be able to access the data and the
Computer will be able to write over it with a new file.

Multi-Disk Drives

You can use FREE and KILL on other disk drives,
as you can with RENAME, by typing the drive
number. Examples:

PRINT FRE E(l) (ENTER)

tells you how much FREE space is on the disk in
drive 1.

KI LL "NEWACC/DAT: 1" (ENTER)

deletes "NEW ACC/DA T" from the disk in drive 1.

SPECIAL MULTI-DRIVE
COMMANDS

In the rest of this chapter, we'll talk about two
commands which you can use if you have a multi
drive system . If you don't have one , go on to
"Chapter Checkpoint" at the end of this chapter.

YOU'RE THE BOSS

The first one copies a disk file. You should, at this
point, have a program file stored in the disk in
drive O named "NEW/NAM'.' Make a COPY of it.
Type:

CO PY "NEW/NAM:0 " TO "NEW/NAM: 1" (ENTER),

If you want , you can rename the file when you
copy it. For instance, COPY "NEW /NA M: 1" TO

"ANOTHER/NAM : 0" (ffiTEID copies "NEW/NAM"
from the disk in drive 1 to the fi le "ANOTHER/
NAM" on the disk in drive 0.

The second command changes the drive number
the Computer goes to if you do not specify one. Up
to now, this has been drive 0. For example, by typ
ing SA lJE " ANYTHING/EX" (ENTER), the Computer
will assume you want to use drive 0. It will then
SAVE this program on the disk in drive 0.

To change this assumption, you can type:

DR I IJE 1 (ENTER)

This makes the Computer assume you want it to
use DRIVE 1, unless you tell it otherwise.

After changing this DRIVE assumption, the Com
puter will respond differently to the same com
mand. By typing SAt.lE "ANYTHING/El< " (ENTER), the
Computer will store "ANYTHING/EX" on the
disk in drive 1. You would now need to type SAlJE
"ANYTHING/E)< :0 " (ENTERl toSAVE it in drive 0.

0 CHAPTER CHECKPOINT

1. How do you re~ame a Ille? Why do you
have to specify the tile's extension?

2. What can you do when you think you're
running out of disk space?

3. If you have more than one disk drive and
do not specify the drive number, which
drive will the Computer use? How can you
change this?

Congratulations. You are now a bonafide disk sys
tem operator. You should now have a good under
standing of how your disk system works and how
to take full advantage of it.

21

SECTION II

Storing a BASIC program is easy. You only need to
use the SAVE command. Storing data takes a little
more effort. You need a program.

Some of you might prefer to buy a ready-made pro
gram. However, if you want more control and are
willing to invest a little time, you will enjoy writing
your own.

In this section, we'll show you how to write a BASIC
program which stores data on disk. We are assum
ing you already know some BASIC. If you don't,
read Section I of Getting Started with Color BASIC.
It will give you all the background you need.

23

c::: ·-·
ONE THING AT A TIME

(Sequential Access to a File)

A tape is simple. There's only one way to put data
on it and one way to read it off. A disk is more com
plex. There are several ways to "file" your data on
it.

In this chapter and the next, we'll show how to
write a program which stores data in a "sequential
access" disk file. It's the simplest file to create and
is actually very similar to a tape "file'.' In Chapter
7, we'll introduce "direct access;' an alternate type
of disk file.

In showing how to store things on disk, we'll fre
quently use the words disk file and disk directory.
We discussed these concepts in Chapter 2, but we'll
summarize them now.

Everything you store on disk must go in a disk file
and be assigned a filename. Your Computer will
index the location of the disk fi le in the disk's
directory. For example, if you want to store the
names of your friends, you could put them in a
disk file named "FRIENDS'.' Your disk's directory

would then index where, on the disk, "FRIENDS"
is stored.

There is, of course, a good reason for all of this.
Using the disk filing system, the Computer will be
able to immediately find any file on the disk.

WRITING A DISK FILE

Let's assume you want to "write" your checks on
the disk:

CHECKS

DR. HORN
SAFEWAY
FIRST CHRISTIAN
OFFICE SUPPLY

We'll start with a short, simple program which
writes the first check, "DR. HORN;' on the disk.
Insert a formatted disk in your disk drive. (If you
have more than one disk drive, use drive 0.)

25

ONE THING AT A TIME -----------------------""""~-,,~-----------------
Note: Chapter 2 shows how to format a disk. (Type
DIR (DIIEB) if you can't remember whether a disk is for
matted.) Chapter 1 explains the driue numbers.

Then type:

10 OPEN "O", 1q, "CHECKS/DAT"

20 WRITE ti 1 , "DR. HORN"

30 CLOSE til

RUN the program. You'll hear the motor of the
disk drive and see the red light. The Computer is
at work doing several tasks.

First, it OPENs communication to the disk so you
can send your checks out to it. Then, it finds an
empty location to store the checks and notes the
beginning location of that disk file in the directory.

All of this happens in line 10. Notice the meaning
of the "O", #1, and "CHECKS/DAT":

1. #1 is a special "buffer" area in memory called
buffer #1. It communicates with the disk drive.
Line 10 OPENs this buffer. (If you've been
using tape, you might remember that buff er
- 1 communicates with the tape recorder.)

2. "O" is the letter "O;' not a zero. It stands for out
put. It tells the Computer that buffer #1 will be
sending out data to the disk.

3. "CHECKS/DAT" is the name of the disk file.
The disk's directory uses this name to index its
beginning and ending locations.

In line 20, the Computer sends out the words "DR.
HORN" to buffer #1 which WRITEs it on the disk.

Then, in line 30, the Computer CLOSEs commu
nication with buffer #1. In doing this, it:

26

• sends out all the data remaining in buffer # 1
to the disk file.

• notes in the disk's directory where "CHECKS/
DAT" ends.

Note: A buffer temporarily stores data so the Com
puter can input and output data to the disk in blocks of
249 characters (bytes) . Since buffer# 1 only contains 8
characters (NDR . HORN"), they would not be sent out
to the disk without closing the file .

It is very important that you CLOSE communi
cation with buffer #1. Why? Well, let's leave
buffer #1 OPEN. Delete line 30 and RUN the pro
gram several times.

The program appears to work the same every time
you RUN it. This is because every time you RUN
(or LOAD) a program, the Computer will auto
matically CLOSE communication with any buff
ers you've left OPENed.

Now, let's assume you switch disks and RUN or
LOAD a program. The Computer will automati
cally CLOSE communication with buffer #1. In
doing this, it will send out its closing information
to the new disk (thinking it's the old one). This
will very possibly garble the contents of both
disks.

Now that we've warned you of the importance of
line 30, re-insert this line in your program and
RUN it again. This is what the program writes on
your disk:

II

Note: L ike our drawing of the disk? The entire
"CHECKS/DAT" file consists of the words "DR.
HORN:' The disk's directory notes the beginning and
ending locations of this file.

You can verify that the Computer has done this by
checking the disk's directory. You remember how
to do that. (Type DIR (ENTER))

Because this program sends your data out to the
disk file, we'll call it an output program.

READING THE DISK FILE

To get t he Computer to read this data from the
disk back into its memory, you need an input pro
gram. Erase the output program you now have in

ONE THING AT A TIME

memory by typing NEW (ENTER). Then type and RUN
this input program:

100 OPEN "I", #1, "CHECKS/DAT"
110 INPUT #1, A$
120 PRINT A$
130 CLOSE # 1

This is actually just the reverse of the output
program ...

Line 100 again OPENs communication to buffer
#1. This time communication is OPEN for "I" -
input. The Computer goes to the disk's directory to
find where to start inputting the file named
"CHECKS/DAT'.'

In line 110, the Computer INPUTs the first data
item from the disk fi le named "CHECKS/DAT"
and labels it A$. Line 120 PRINTs A$.

Finally, line 130 CLOSEs communication to
buffer # 1. In doing this, the Computer inputs any
data remaining in the buffer.

Note: You can compare an input program to the
LOAD command. An input program inputs a data
file; LOAD inputs a program file.

0

ONE CHECK AT A TIME

At this point, we've used an output program and
an input program. Let's combine t hem into one
program. Type:

10 OPEN 11011 t # 1 , "CHECKS/DAT"
20 WRITE # 1 , "DR, HORN"
30 CLOSE #1

100 OPEN II I II , #1 , "CHECKS/DAT"
110 INPUT # 1 , A$
120 PRINT A$
130 CLOSE # 1

Now add these lines and RUN the program:

ZS WRITE #l, "SAFEWAY"
115 INPUT 111, B$
120 PRINT A$, B$

Lines 10-30 output two checks into your disk file:

~ ..
,, Gflccl<S/DA1

,t
11 D R • H O R N t 11 11 S A F E W A Y 11

Lines 100-130 input them. Try to input more than
two checks. Change line 115 and 120:

115 PRINT A$
120 GOTO 110

and RUN the program ... The Computer prints:

?IE ERROR IN 110

The Computer is notifying you that you are asking
it to inpu t more checks than are in the fi le.
Technically, the IE error means you've attempted
to Input past the End of the File.

This error makes things difficult when you want
to input all the data, bu t you don't know how
much is in the file. We showed you this error so
you would appreciate our new word-EOF. Type:

105 IF EOF(l) = - 1 THEN 130
120 GOTO 105

and RUN ... EOF checks to see if you've reached
the end of buffer #1 (the number in parentheses).
If you have, EOF(l) equals a - 1. If you haven't,
EOF equals 0.

27

ONE THING AT A TIME

By adding line 105 to the program, the Computer
checks to see if you've reached the End before
inputting the next check. If you have, line 130 clo
ses communication to the file.

DETAILS ...

So far, "CHECKS/DAT" has been easy to handle,
but not very useful. You would probably like to
add more details:

CHECKS
PAYABLE TO AMOUNT EXPENSE

DR. HORN 45.78 MEDICAL
SAFEWAY 22.50 FOOD
FIRST CHRISTIAN 20.00 CONTRIB.
OFFICE SUPPLY 13.67 BUSINESS

Change lines 25 and 115, and add some lines by
typing:

25 WRITE 111, ll5 , 78
27 WRITE 11 1, "MEDICAL"
110 I NPUT 111, A$, B, C$
115 PRINT A$, B, C$

LIST the program. This is the way it should look
now:

10 OPEN 11011 t II 1 I "CHECKS/DAT"
20 WRITE II 1 I "DR, HORN "
25 WRITE II 1 I ll5,78
27 WRITE 111 I "MEDICAL"
30 CLOSE II 1
100 OPEN II I II t II 1 I "CHECKS/DAT"
105 IF EOF (1) = -1 THEN 130
110 INPUT II 1 t A$, B, C$
115 PRINT A$, B' C$
120 GOTO 105
130 CLOSE 111

Now RUN it.

A GOOD TIGHT PROGRAM

What if you need to store a whole list of checks?
Continue to plod along with this program, and it'll
soon be unbearable.

28

Here, we have a tight program which asks you to
INPUT all your data, stores it on disk, and reads
it back into memory. Erase memory and type:

5 CLS
10 OPEN "O", 111, "CHECKS/DAT"
20 INPUT "CHECK PAYABL E TO : " ; A$
30 IF A$ = "" THEN 80
ll0 INPUT "AMOUNT : $"i B
50 INPUT "E){PENSE : " i C$
60 WRITE 111 I A$ I B I C$
70 GOTO 20
80 CLOSE 111
90 CLS
100 PRINT "YOUR CHECKS ARE STORED ON DISK"
110 I NPUT "PRESS <ENTER > TO READ THEM"i A$
120 OPEN "I", 111, "CHECKS/DAT"
130 IF EOF<l> = -1 THEN 170
1a0 INPUT 111, A$, B, C$
150 PRINT A$i Bi C$
160 GOTO 130
170 CLOSE 111

RUN it. Input any checks. When you want to quit,
simply press (ENTER) in answer to the CHECK PAY
ABLE TO : prompt. For example:

CHECK PAYABLE TO : ? GOODY BANK ~
AMOUNT : $? 230, 97 (ENTER)
EXPENSE :? CAR (ENTER)
CHECK PAYABLE TO : ? (ENTER)

YOUR CHECKS ARE STORED ON DISK
PRESS <ENTER > TO READ THEM? (ENTER)
GOODY BANK 230,97 CAR

PROGRAMMING EXERCISE
#6.1

Write a program which will print
only those checks which we.re for
CAB.expenses.

The answers to all the "Programming Exercises"
are in Appendix A.

0 CHAPTER CHECKPOINT
1. What is a bufler#l?
2. Why must y ou OPEN a disk file?
3. Why must y ou CLOSE It?
4. What is the difference between a lile OPEN

for input and output?

TI-y saving many different graphics
programs on disk and calling them
from one main program. Sample
Prog1·am 7 in Appendix C shows
how.

You can quickly store, organize, and
update all your financial information with
a disk system. See Sample Program 1, 2,
and 8 in Appendix C for program listings.

0
0

0 oo

CHANGING IT ALL AROUND
(Updating a Sequential Access File)

Everything you put on the disk and take off of it
goes through a spot in memory called a buffer.
When we told you how to put data on tape in Get
ting Started With Color BASIC, we didn't talk
about these buffers. We didn't need to. There is
only one buffer which communicates with the tape
recorder-buff er # - 1.

With your disk system, you can use up to 15 buff
ers. This means you can have up to 15 spots in
memory communicating with 15 different disk
files at the same time.

The reason we brought this subject up is that we
want to demonstrate how to change some of the
data in your file. To do this, it is very helpful to use
two buffers.

Note: In Chapter 10, we'll ckmonstrate lww to take
advantage of more of these buffers.

Type this program:

10 OPEN "O", 1q, "ANIMALS/DAT"
20 WRITE 111, "HORSE"
30 WRITE 111, "COW"
ll0 CLOSE 111

RUN it. Now, let's assume you want to change
"COW" to "GIRAFFE'.' First, you need to read the
data items into memory with an input program.
Erase memory. Type NEW~ and then type:

10 OPEN "I", 111, "ANIMALS/DAT"
20 IF EOF(l) = -1 THEN 110
30 INPUT 111, A$
ll0 CLS : PRINT@ 106, "DATA ITEM : " A$;
100 GOTO 20
110 CLOSE 111

Then you need to add lines which will allow you to
change one of these data items and store the
change in the disk file. Type:

50 PRINT@ 451, "PRESS <ENTER > IF NO
CHANGE"i

60 PRINT@ 263, "CHANGE :"i
70 INPUT X$

29

CHANGING IT ALL AROUND

80 IF X$ =""THEN}($= A$
90 WRITE •1,){$

RUN the program. As soon as the Computer gets
to line 90, it prints:

?FM ERROR IN 90

LIST the program. Line 10 opens buffer #1 to
input data. Line 90, however, is attempting to out
put data to buffer #1. The Computer won't output
data to a buffer opened for input.

This is where the additional buffer becomes
handy. To output your changed data to the disk,
you can open another buffer for output. Add these
lines:

15 OPEN "O", •2, "NEW/DAT"
90 WRITE •2, X$
120 CLOSE •2

RUN the program. Change "COW" to "GIRAFFE'.'
This is the way the entire program looks:

10 OPEN "I", •1, "ANIMALS/DAT"
15 OPEN "O", •2, "NEW/DAT"
20 IF EOF (1) = -1 THEN 110
30 INPUT •1, A$
40 CLS : PRINT@ 106, "DATA ITEM : " A$;
50 PRINT @ 451, "PRESS <ENTER > IF NO

CHANGE";
60 PRINT @ 263, "CHANGE : ";
70 INPUT X$
80 IF X$ = "" THEN X$=A$
90 WRITE •2, X$
100 GOTO 20
110 CLOSE •1
120 CLOSE •2

Line 10 OPENs communication to buffer #1 for
input from a disk file named "ANIMALS/DAT'.'
Line 15 OPENs communication to buffer #2 for
output to a disk file named "NEW/DAT'.'

Line 30 inputs A$ from buffer #1. Line 70 allows
you to INPUT X$, which will replace A$. If you
input X$, line 90 outputs it. Line 90 outputs X$ to
buffer #2, which, in turn, WRITEs it to "NEW/
DAT'.'

30

Line 110 CLOSEs communication to buffer #1
and line 120 CLOSEs communication to #2.

Now you have two files. "ANIMALS/DAT" con
tains the old data and "NEW/DAT" contains the
new. Add these lines to the program and RUN it:

130 KILL "ANIMALS/DAT"
140 RENAME "NEW/DAT" TO "ANIMALS/DAT"

Now the old "ANIMALS/DAT" file is deleted from
the disk and the " NEW /DAT" file has been
renamed to "ANIMALS/DAT?' To see what this
updated file contains, SA VE this program if you
want, erase memory, and type and RUN:

10 OPEN u In ,
1 ' "ANIMALS/DAT"

20 IF EOF<ll = -1 THEN 60
30 INPUT •1, A$
40 PRINT A$
50 GOTO 20
60 CLOSE •1

Understand? Try these exercises:

PROGRAMMING EXERCISE #6.1

Write a program which will allow
you to add animals to ''ANIMALS/
DAT.'

Hint- You must add them to the
end of the file.

PROGRAMMING EXERCISE #6.2

Write a program which will allow
you to delete animals from "ANI
MALS/DAT.'

Ready for the big time? Our next exercise is a pro
gram many of you will want - a mailing list pro
gram. We'll start you out with these lines which
input the names, addresses, and phone numbers of
your club members:

CHANGING IT ALL AOUND

80 OPEN "0", •1, "MEMBERS/DAT"
90 GOSUB 430
100 IF N$="" THEN CLOSE•l:END
110 WRITE •1, N$' A$' P$
120 GOTO 90
430 CLS: PRINT "PRESS <ENTER > WHEN

FINISHED" :PRINT
4ll0 INPUT "NAME OF MEMBER : II ;N$
450 IF N$="" THEN 480
460 INPUT "ADDRESS : II ; A$
ll70 INPUT " PHONE NUMBER •II •

• I P$
ll80 RETURN

Now finish it by solving this Programming Exer
cise. It'll be difficult, but we think you can do it.
Remember, no one's watching. If you get bogged
down, refer to the answer in Appendix A for help.

PROGRAMMING EXERCISE #6.3

Write a program in which you can:

1. See tlJe names, addresses, and
phone JlPJDbers of your club's
.me.mbe.n,.

a. Change the addreues of some of
the members.

3. Add new members.
· 4. Delete so.me of the members.

All of this works quite well on a small scale, but
how would it work in a large file? What if you had
500 members in your "MEMBERS/DAT" file and
you wanted to change only the address of the
453rd member?

The process would still be the same. You would
have to input each of the 500 members from one
file and then output them all to another file. All of
this just to change one record. There must be an
easier way!

The easier way is called the direct access method
of programming. It makes your files easier and
faster to update, but in many cases it will make
them take up more space in your disk. The choice
is yours. We'll talk about direct access in the next
chapter.

Note: We've demonstrated sh-Ort example programs.
There are many ways you could improve them. See
the "Sample Programs" in Appendix C for ideas.

0 CHAPTER CHECKPOINT
1. Wby can't you input and output data to the

.same bufler at the same time?
2. Csn you Jnput data .&om a file OPENed for

"0" - output?

31

0

I l)i"tORMATION I
-;

• • •

0

0

DISK FILE
STOR '4.GE A REA

A MORE DIRECT APPROACH
(Direct Access to a File)

Up to now, we haven't been concerned with how
your data is stored on the disk. For example, you
might have put this in a disk file:

~
''Ntwt°ls/DAT"
,I

"MARIE ALEXANDER," "J. 0 0
E, 11 "MARK JONES," "BILLS
MITH"

~ ~ 'NAMES/ DAT"
What if you want to change "J. DOE;' to
"ELLIO'IT HOBBS"? You could not ask the Com
puter to go directly to "J. DOE:' The Computer
does not know where it is.

All the files we've created so far have been
"sequential access'.' To find a particular item in a

sequential access file, the Computer must start at
the beginning and search through each item. It
can't go directly to the item. In short, a sequential
access file does not take full advantage of your
disk's "filing system'.'

USING THE ·DISK FILING SYSTEM

In Chapter 2 we talked about how formatting your
disk creates this filing system. In our analogy, the
file cabinets are the disk "tracks" and the file
drawers are the disk "sectors'.' You can use tracks
and sectors to immediately find any item you
want.

To do this, you can divide your file into something
which we call "records:' You can then write a pro
gram which stores each record in a sector and
allows you to put data in the records. The next
page shows how your new disk file will look:

33

A MORE. DIRECT APPROACH

~ of 'NIJMES/DAT''
j

l"MA R I E ALE XANDER "
record 1

l"J . DOE "
record 2

I" MA RK JON ES II

PU'ITING A RECORD ON DISK

Enough theory! Let's put one record in a disk file.
Since it'll be a direct access file, we don't have to
start with the first. We'll start with the second.
Erase memory and type:

10 OPEN "0" , # 1 ' "NAMES/DAT"
20 WRITE # 1 ' lljt DOE"
30 PUT # l ' 2
40 CLOSE #l

record 3 The program looks familiar ... except for the word
PUT in line 30 and the "D" in line 10. More on that

I" B I LL
record 4

-I I t .1.#Ul vrr 'N11M£s/ fJAT 1"

With each record t he same length (the length of a
sector), the Computer can go directly to "J. DOE'.'
All it has to do is count down to the second record.

We call this a "direct access" file. By direct access,
we mean you can directly access any record you
want in the file.

A direct access fi le h as one shortcoming. Each
record is the size of a sector-256 bytes. Since one
of these bytes holds one character of data, each
record is large enough to hold 256 characters.

This means that our drawing above is a little mis
leading. If we illustrated all the empty space in
each record, they would each have to be nearly ten
times as long. We simply don't have enough room
on the page.

If you're a beginner, all this empty space probably
won't bother you. An empty disk can hold up to
61f records-each 256 bytes long. Later on, when
you become more comfortable with programming,
you'll probably want to pack more records into a
disk file. You can then progress to Chapter 9,
where we will demonstrate how to make smaller
records.

34

later . . .

Now let's add some lines so the Computer will
read this record back into its main memory. Type:

34 GET 11 1, 2
36 INPUT 111, A$
38 PRINT A$

Note that line 34 uses another new word-GET.
Hmmm ... any ideas? Let's look at the ent i re
program:

1 Ill OPEN "D",
20 WR ITE 111 ,
30 PUT111,2
34 GET 111 , 2
36 INPUT 111 t

38 PRINT A$
40 CLOSE 111

111, "NAMES/DAT"
"J , DOE"

A$

RUN it ... You'll hear the now familiar sound fr6m
your disk drive. The Computer is writing "J.
DOE" in the disk file and then reading it back into
memory. Here's how . ..

Line 10 OPENs buffer # 1 which will communi
cate with a disk file named "NAMES/DAT'.' As we
said in the last two chapters, buffer #1 is one of
the 15 "buffer" areas which can communicate with
your disk.

Communication is being OPENed for "D'.' "D"
stands for direct access. Unlike sequential access,
you don't have to specify whether you're OPENing

A MORE DIRECT APPROACH ------ - ---------------------·----------
communication for output or input. The "D" suf
fices for both.

Line 20 WRITEs "J. DOE" to buffer #1. Since this
program is open for direct access, "J. DOE" will
remain in buffer #1 until the program sends it
elsewhere.

Line 30 does just that. It PUTs the contents of
buffer #1 into the disk file as record 2:

record 1

l11 J, DOE"
record 2

At this point, "J. DOE" is no longer in buffer #1.
It is in record 2 of the disk file.

Line 34 GETs record 2 and reads it back into
buffer #1. Now "J. DOE" is in both the disk file
and buff er # 1.

Line 36 INPUTs the record from buffer #1 into
main memory and labels it A$. Now "J . DOE" is
in both the disk file and main memory. It is no
longer in buffer # 1.

With "J. DOE" in main memory, line 38 can
PRINT it.

Note: In the sequential access programs in Chapters
5 and 6, you didn't need PUT and GET. The Com
puter did this automatically. The OPEN line specified
whether the buffer should output (PUT) data into the
disk file or input (GET) data from the disk file.

Notice our drawing shows only two records in the
file. GET record 4. 'fype:

34 GET 111 , a

and RUN ... The Computer gives you an IE (Input
past the End of the File) error. This is because the
last record the program PUT in the file was record
number 2. Hence, record 2 became the end of the
file.

Note: Didn't get this error? You must already have a
~NAMES/DAT" file on your disk with three or more
records.

To PUT more records in the file, add these lines.
Then RUN the program:

31 WRITE 111, "BI LL SMITH"
32 PUT 111 , a

Now your "NAMES/DAT" file will have these four
records:

~
''N111/i;,/DAT"
,/

record 1

l11 J, DOE"
record 2

record 3

l"BILL SMITH"
record 4

35

A MORE DIRECT APPROACH

PROGRAMMING EXERCISE 7.1

Change lines 32 and 84 so that your
· Computer will use record-3 to PUT
and GET "BILL SMITH!'

DEALING WITH GARBAGE

You have not yet PUT anything in record 1. Ask
the Computer to GET record 1 and see what hap
pens. Type this and RUN:

3ll GET # 1 , 1

Since the Computer didn't PUT anything in
record 1, record 1 contains whatever "garbage" is
already there.

When you ask the Computer to GET and INPUT
it, it will either get the "garbage" or give you an
OS (Out of String Space) error. The OS error sim
ply means the garbage consumes more than 200
bytes (characters).

Since your empty records will contain garbage
until you fill them with something, it's a good idea
to put some kind of data in all of them in advance.
Erase memory and type this program:

10 OPEN 11011 t # 1 , "NAMES/DAT"

20 FOR X = 1 TO 10

30 WRITE # 1 , "NO NAME"

ll 0 PUT # 1 , X

50 NEXT X

GIil CLOSE #l

RUN it. This program sets up a disk file named
"NAMES/DAT" which has ten records. Each
record contains "NO NAME":

1
11 NO NAM E 11

r ecord 1

36

record 2

1
11 NO NAME 11

record 3

1
11 NO NA ME 11

record 4

1
11 NO NAME 11

record 5

1
11 NO NAME 11

record 6

j 11 NO NAME"
record 7

1
11 NO NA ME 11

record 8

1
11 NO NAME 11

r ecord 9

j 11 NO NAME "
record 10

Now erase memory and type this:

10 OPEN "D", •1, "NAMES/DAT"
20 INPUT "RECORD NO , (1-10)" j R

30 IF R > 10 THEN 20

lllll IF R < 1 THEN 130

50 GET •1, R

60 INPUT • 1 , A$
70 PRINT A$ " IS THE NAME I N RECORD" R

A MORE DIRECT APPROACH

80 INPUT "TYPE NEW NAME ELSE PRESS

<ENTER>"; A$

90 IF A$ = II II THEN 20

100 WRITE•!, A$

110 PUT • 1 , R

120 GOTO 20

130 CLOSE •1

RUN it. See how all your records initially contain
"NO NAME:' Then, you can change the data in
any of the records at will, as many times as you
want. (To end the program, type a 0 as the
RECORD NO.)

READING ALL THE RECORDS

At this point, you might like the Computer to
print all of the records in your "NAMES/DAT" file
with their appropriate record numbers. SAVE
your program, if you want, erase memory, type,
and RUN:

10 OPEN "O", •1, "NAMES/OAT"

20 R = 1
30 GET • 1 , R

40 INPUT • 1, A$

50 PRINT A$ "-- IS IN RECORD" R

60 IF R = 10 THEN 90

70 R = R + 1

80 GOTO 30

80 CLOSE •1

Line 20 makes R equal to 1. In the next lines, the
Computer GETs, INPUTs, and PRINTs record 1.

Line 70 then makes R equal to 2 and the whole
process is repeated with record 2. When R equals
10-the last record in the file-the program ends.

There are many occasions when you will not know
the last record number in the file. Change line 60
and RUN the program:

60 IF R = LOF < 1 l THEN 90

LOF looks at the file which buffer #1 (the number
in parenthesis) is communicating with. It tells
the Computer what the last record number in that
file is.

MORE POWER TO A RECORD

So far, we have been PUTting only one "field" of
data in each record. We can make the file more
organized by subdividing each record into several
fields.

Erase memory, type, and RUN this program:

10 OPEN "0"' # 1 ' "BUGS/DAT"

20 WRITE•!, "FLIES", 1000000, "HAIRY"

30 PUT • 1 , 2

34 GET •1, 2

36 INPUT # 1 ' 0$, N, T$

38 PRINT 0$' N' T$

40 CLOSE •1

Line 20 WRITEs t hree fields of data into buffer
#1. Then, line 30 PUTs the entire contents of
buffer # 1 (all three fields) into record 2 of the file:

~
•'au:i'J DAT,,
✓

record 1

l11 FLIES t 1 00000121 t
11 HAIRY 11 I

record 2

Line 34 GETs everything in record 2 and reads it
into buffer #1. Theri, line 36 INPUTs all three
fields of data from buffer # 1 and labels them as
D$, N, and T$.

Try substituting this for line 36 and RUN ...

36 INPUT •1, 0$

Since this line asks the Computer to INPUT only
the first field of data in buffer #1, it INPUTs only
"FLIES'.'

37

38

A MORE DIRECT APPROACH

PROGRAMMING EXERCISE 7.2

What do you think the Computer
would print if you ran the pro
gram, using this for line 36? Why?

36 INPUT •t, N

PROGRAMMING EXERCISE 7.3

Change the program which stores
the 0 NAMESIDAT" file so that
each record will contain live fields
of data:

1. name
2. addreBJI
3. city
4.state
5.zip

0 CHAPTER CHECKPOINT

1. What are records? Why must you w,e tbem
to access data directly?

2. What are fields?
8. What is tbe difference between a sequential

access and a direct access file?
4. Why is it quicker to update a direct acceBB

file?

SECTION III

After writing disk programs for a while, you might
want to make them more efficient. Perhaps you'll
want to put more data on the disk. You might also
want to economize on memory space or use some
extra buffer space.

At that time, we invite all of you ambitious people
to read this section. The subject matter is more
advanced and technical. Once you finish it, though,
you'll have all the information you need to write the
best possible disk programs.

39

\

\

8

HOW MUCH CAN ONE DISK HOLD?
(What the Computer writes in a Disk File)

Your disk is divided into thousands of equal-sized
units. Each unit is a "byte'.' One of these bytes can
hold one character. Thus, the word STRAW will
consume five bytes of disk space.

An empty disk contains 161,280 bytes. 4,608 of
them house the directory. This leaves you 156,672
for your disk files.

Note: A disk contains 35 tracks. Each track contains
18 256-byte sectors, or 18 x 256 = 4,608 bytes. One of
the tracks is for the directory. This leaves 156,672
bytes (4,608 bytes per track x 34 tracks).

Does this mean you can use the entire 156,672
bytes for data? Possibly. There are two factors
which will determine this.

The first has to do with the way the Computer
allocates space for a disk file. It stores a file in clus
ters. (We call them granules.) Each granule con
tains 2,304 bytes.

Because of this, all of your disk files will contain
a multiple of 2,304 bytes. If your file contains

2,305 bytes of data, for example, the Computer
will allocate 2 granules for it, or 4,608 bytes (2,304
X 2).

The Computer allocates file space in this manner
because it's the most efficient way to create a file.
It is very tricky to change this and is something
that only very technical people would want to do.
(See Chapter 11, Technical Information, for addi
tional information.)

The second factor which affects how much data
you can put in a disk file is your program. Some
disk programs are very efficient. Others put a lot
of overhead and empty space in the file.

In the next two chapters, we're going to compare
eight different types of programs. Each will store
the same data - 5, "PEN;' - 16, and "PAPER" -
in a disk file named "OFFICE/DAT'.' The amount
of overhead and empty space each program will
put in "OFFICE/DAT" will vary greatly.

41

HOW MUCH CAN ONE DISK HOLD?

WRITING ON THE DISK

Program 1 uses WRITE to put this data on the
disk. 'fype and RUN it:

PROGRAM I
21 bytes

10 OPEN "O", •1, "OFFICE/DAT"
20 WRITE •1, 5, "PEN"
30 WRITE #1, -16, "PAPER"
40 CLOSE •1

There is an easy way to see what lines 20 and 30
wrote on your disk. 'fype these two lines exactly as
they are above, but leave off the #1 in each line.
This will prevent the Computer from writing the
data on your disk (via buffer #1). The Computer
will write it on your screen instead. 'fype:

WRITE 5 , "PEN" (ENTER)
WRITE -16, "PAPER" (ENTER)

Look very carefully at what the Computer
WRITEs. Every blank space and punctuation
mark counts.

Notice the way the Computer WRITEs the two
strings (PEN and PAPER). It puts quotation
marks around them. It WRITEs the numbers (5
and -16) differently. If the number's negative, the
Computer puts a minus sign in front of it. If it's
positive, the Computer simply puts a blank space
in front of it.

There are two characters you typed which the
Computer didn't WRITE on the screen. These are
the two (ENTER) characters which you typed at the
end of the WRITE lines. It skipped down to the
next line instead:

5, "PEN"
OK

-16, "PAPER"
OK

When writing on the disk, the Computer actually
WRITEs each (ENTER) character exactly as you
typed it. This illustration shows what Program 1
WRITEs on your disk. (We used asterisks to rep
resent the (ENTER) characters):

42

..£,,(d,

,, t'f
OFF/Ce/DA'T''

I
,"PAPER"*

Note: Want to be precise? What the Computer
actually WRITEs on the disk are binary codes. Each
character has an ASCII code (see Appendix D) which
the Computer converts to a binary number.

Count the characters. Make each (ENTER) (repre
sented by an asterisk), comma, and quotation
mark count for one character each. Don't forget
the blank space preceding 5. What you should
come up with is 21 characters. Program 1 puts 21
bytes in "OFFICE/DAT'.'

Since the Computer allocates file space in clusters,
"OFFICE/DAT" will actually consume 1 granule
of disk space or 2,304 bytes. However, for the pur
pose of comparison, we'll only look at the 21 bytes
which Program 1 puts in "OFFICE/DAT'.'

A DISK-EYE VIEW

To input " OFFICE/DAT;' type and RUN this
"INPUT Program" (erase memory first):

INPUT PROGRAM

10 CLS
20 OPEN "I", •1, "OFFICE/DAT"
30 IF EOF<1> = -1 THEN 80
40 INPUT •1, A, 8$
50 PRINT: PRINT "DATA ITEM :" A
60 PRINT "DATA ITEM :" 8$
70 GOTO 30
80 CLOSE •1

It did input your data items. However, it did not
input the quotation marks, commas, and blank
spaces which we told you were interspersed with
your data.

To actually see what Program 1 wrote on your
disk, you can use a "LINE INPUT Program'.' First

HOW MUCH CAN ONE DISK HOLD?

SAVE the "INPUT Program" you now have in
memory. (You'll be using it later.)

Now change it into a "LINE INPUT Program?'
Delete line 50 and change lines 40 and 60. Type:

a0 LINE INPUT • 1, L$
5111
8111 PRINT "DATA LINE :" L$

and RUN ... Line 40 INPUTs an entire LINE,
rather than one single data item from the disk file.
This LINE includes everything up to the~
character- punctuation marks, spaces and all.

In the "OFFICE/DAT" file, the first LINE contains
5, "PEN?' Line 40 labels this line as L$ and line 60
PRINTs it on your screen.

The program then INPUTs and PRINTs - 16,
"PAPER" - the second and final line in the file.

We can easily alter this program so that it will
count how many bytes are in the file. Add these
lines and RUN it:

25 PRINT "THIS FILE CONTAINS : II

27 PRINT: PRINT : PRINT: PRINT
57 M$ = L$+ 11 *11

8111 PRINT M$i
GS L = LEN(M$) + L
9111 PRINT @ 39a, L "BYTES"

Line 57 adds an asterisk to each LINE. This aster
isk represents the (ENTER) character. Line 65 then
counts the total number of characters (bytes) in
each line.

This is the entire "LINE INPUT Program":

LINE INPUT PROGRAM

10 CLS
20 OPEN "I", •1, "OFFICE/OAT"
25 PRINT "THIS FILE CONTAINS : "
27 PRINT: PRINT : PRINT: PRINT
30 IF EOF(l) = -1 THEN 80
a0 LINE INPUT •1, L$
57 M$ = L$ + "*"
60 PRINT M$i
65 L = LEN(MS) + L
70 GOTO 30

8111 CLOSE •1
9111 PRINT @ 39a, L "BYTES"

SAVE it. It will be useful in comparing what Pro
grams 2, 3, and 4 put in your disk file.

PRINT-FOR A CHANGE

So far, we've used only WRITE to put data in a
disk file. If you've used other forms of BASIC, you
might be accustomed to using PRINT rather than
WRITE.

The Color Computer disk system allows you to do
this. However, PRINT is much more tricky to use.
If you're not used to it, don't bother learning all
this. Skip to Program 4.

... Still with us? KILL your old "OFFICE/DAT"
file by typing:

KILL "OFFICE/DA T" (ENTER)

Now erase memory, and type and run Program 2.
Then RUN the INPUT or the LINE INPUT Pro
gram, if you'd like.

Here's Program 2:

PROGRAM2
42 bytes

1111 OPEN "0", •1, "OFFICE/OAT"
20 PRINT •1, 5, "PEN"
30 PRINT •1, -16, "PAPER"
40 CLOSE •1

Lines 20 and 30 PRINT your data to buffer #1
which, as you know, is one of the 15 buffers which
will send your data to the disk file. To see what
Program 2 PRINTs, type:

PR I NT 5 , "PEN" (ENTER)
PRINT -18 "PAPER"~

Notice the Computer did not enclose the strings
- PEN and PAPER- in quotes, as WRITE did.
This will be important to know later.

Now look at the blank spaces. We'll start with the
first one - the one before the 5. This means the

43

HOW MUCH CAN ONE DISK HOLD?

same thing it did with WRITE. 5 is a positive
number.

Now for the other blank spaces ... Whenever the
Computer PRINTs a number, it PRINTs one
"trailing" blank space after it. This explains the
first blank space after the 5 and -16.

How about all the additional spaces? Remember,
from Getting Started With Color BASIC, what a
comma in the PRINT line does? It causes the Com
puter to PRINT your data in columns, inserting
spaces between the columns.

The Computer will PRINT every single one of
these blank spaces in your disk file:

~
,, OFF/ c°i; lJA-r ,,

✓
5 PEN*-16

PAPER*""

JA1./.£ "5 ''0FF/C£/IJAT ,,
Count all the characters. Program 2 puts 42 bytes
into "OFFICE/DAT."

Note: Unclear about what commas d<, in a PRINT
line? Type some more PRINT lines with commas
between data items:
PRINT I, 2, 3, 4, 5, 6, 7, 8 (EfflR)
PRINT "HORSE", ' COM", "RABBIT", "DOG' (EfflR)

PRINTING LESS

You might feel that all the blank spaces PRINT
inserts in your disk file are a waste of space. They
are. The way to get around this waste is to use
semi-colons. You might again recall, from Getting
Started With Color BASIC, that semi-colons in a
PRINT line compress your data. Type:

PR I NT 5; 11 PEN 11 (ENTER)
PRINT -1 6i "PAPER" CENilID

You can compress your data on the disk in the
same manner. Erase memory and KILL your old

44

"OFFICE/DAT" file. Then type and RUN this
program:

PROGRAMS
17 byt.es

10 OPEN "O", •1, "OFFICE/DAT"
20 PRINT •1, 5; "PEN"
30 PRINT •1, -16i "PAPER"
40 CLOSE •1

This is what Program 3 PRINTs on your disk. (Use
the LINE INPUT Program to test this, if you'd
like):

~
~I T'' ''OFF/Ce Pl+

I

-4cd
,. %
OrF/cc/l>Ar ,,

t
5 PEN*-16 PAPER*

Very efficient. Only 17 bytes. There are only three
blank spaces in this disk file. There is a space
before the 5 (to indicate that it is positive) and
spaces after 5 and - 16 (to indicate that they are
numbers). There are no blank spaces around the
strings.

THE TRICKY PART

There are certain types of PRINT lines which are
tricky. (We did warn you, didn't we?) Type:

HOW MUCH CAN ONE DISK HOLD?

PRINT "PEN" i "PAPER" (ENTER)
PRINT "JONES, MARY" (ENTER!
PRINT "PEN", 5 ~

The line PR I NT • 1 , "PEN" i "PA PER" (in your disk
program) would print this in your disk file:

PEN PAPER*

The Computer would read PENPAPER back into
memory as one item. (Reason: there is not a "deli
meter" - a comma, quotation mark, or space - to
separate PEN from PAPER).

The line PR I NT • 1 , "JONES, MARY" would print
this in your disk file:

JONES, MARY*

The Computer would read JONES, MARY back
as two items: JONES and MARY. (Reason: The
Computer interprets the comma as a delimeter).

The line PR I NT • 1 , "PEN" , 5, would print this
in your disk file:

PEN

The Computer would read PEN 5
(with all the blank spaces) back into memory as
one item. (Reason: although the Computer nor
mally interprets blank spaces as a delimeter, it will
not interpret them in this way when they follow a
string and precede a number).

For more information on using PRINT in disk pro
grams, see the TRS-80 Model I, Model II, or Model
III Disk System Owner's Manual.

AN ATIRACTIVE DISK FILE

PRINT USING is another word you can substitute
for WRITE. We discussed PRINT USING in Going
Ahead With Extended Color BASIC). Type:

PRINT USING II/,, 'Y.,$+##,##" j II PEN" I 5
(ENTER)

PRINT USING "';(, 'X.$+##. ##" i "PAPER" I -1 6
(ENTER)

You can get the Computer to print these same
images on your disk with this program. KILL
"OFFICE/DAT;' erase memory, and type and
RUN:

PROGRAM4
32 bytes

10 OPEN "O", •1, "OFFICE/ DAT"

20 PRINT •1, USING "%, l',S+•••••" ;
"PEN", 5

30 PRINT #l, USING"%

"PAPER", -16

1'.10 CLOSE •1

which prints this in your disk file:

~at~ I

%$+••·•• "!

PEN $+ 5.00*PAPER
$-18.00*

~i,fk
45

HOW MUCH CAN ONE DISK HOLD?

Note: There are fwe blank spaces between the% char
acters in lines 20 and 30. Counting the two % char
acters, this string fi,eld (for printing PEN and
PAPER) contains seven byres.

Now the data is already in an attractive print for
mat. You can input and print it using a simple line
input program. Erase memory, type and RUN:

more programs which will put the same data in
direct access files.

IZl CHAPTER CHECKPOINT

1. What is the minimum size of a disk Ille?
Why can't it be smaller?

10 OPEN " l"t • lt "OFFICE/DAT"

t a PRINT line

20 IF EOF<ll = -1 THEN 60
30 LINE INPUT •1 t A$
a0 PRINT A$
50 GOTO 20
60 CLOSE •1

All of the files we've created in this chapter are
sequential access. The next chapter compares four

46

UT'!
6. What doeB a comma in a PJ

the Computer to do?
8. What does a semi-colon il.

cause it to do?
7. How does the Computer PB

-· ... • ~ -.

,r ,,

i]
i]
i]
i)

i]

i1
i]
i]
i]
47

9

TRIMMING THE FAT OUT OF DIRECT ACCESS
(Formatting a Direct Access File)

Direct access files often contain a lot of empty
space. For example, our first program is very sim
ilar to Program 1 from the last chapter. The
WRITE lines are identical. However, because it is
direct access, it will put 512 bytes in "OFFICE/
DAT":

PROGRAMS
512 bytes

10 OPEN "D", •1, "OFFICE/DAT"
20 WRITE •1, 5, 11 PEN"
30 PUT • 1, 1
Ll0 WRITE •1, -18, "PAPER"
50 PUT •1, 2
80 CLOSE •1

A direct access program puts your data inside rec
ords. Each record is 256 bytes. Program 5 puts two
records in the "OFFICE/DAT" fi le. Therefore, it
will consume 2 x 256, or 512 bytes:

~ °'6' ''OFFIC€/DA

I
I I 11111111111111
I 11111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
I 1111111. 111111111111111
811111111111111111111111
111111111111111111111111

TRIMMING THE FAT OUT OF DIRECT ACCESS

record 1

-!Gt "PAPER"*

record 2

This obviously wastes a massive amount of space.
Notice that what the Computer actually writes in
each record:

St "PEN " *
- 16, "PAPER"*

is the same as what Program 1 wrote. Count the
bytes. That's nine bytes in the first record and 12
in the second. You'll need to know this for our next
program.

48

Note: We could have used PRINT or PRINT USING
rather than WRITE. The Computer would have then
PRINTed _your data inside each record using the
PRINT or PRINT USING format.

TRIMMING THE FAT

Program 6 is the same as Program 5, except that
we inserted a number 12 at the end ofline 10.This
tells the Computer to make each record 12 bytes
long:

10

20
30
40
50
60

PROGRAM6
24 bytes

OPEN 11011 , • 1 ' "OFFICE/OAT",
WRITE •11 5' "PEN"
PUT •1, 1

WRITE•l1 -1 G 1 "PAPER"
PUT •11 2
CLOSE •1

and really whittles this file down:

~w~
/ "OFF!;,[; DAT''
I 5,"PEN"* I
record 1

I- 1 6 t
II PAPER 11 *I

12

record2 \

.iAUJ_,~
.. OFF ICE/ DAT "

In a direct access file, all records must be the same
length. (We explained why in Chapter 7.) If you
don't tell the Computer how long to make them,
they will all be 256 bytes.

In this program, we made each record 12 bytes, the
size of the largest record. 'fype and RUN Program
6, if you'd like. (Be sure to erase memory and
KILL your old "OFFICE/DAT" file first.) After
RUNning Program 6 you can use this program to
input the file:

TRIMMING THE FAT OUT OF DIRECT ACCESS

DIRECT INPUT PROGRAM

10 OPEN "D" ' • 1 ' "OFFICE/DAT", 12

20 R = R + 1
30 GET •1 , R
a0 INPUT•t, A,BS

50 PR INT "RECORD" R II: II A; 6$
60 IF LOF(l) <> R THEN 20
70 CLOSE •1

Note: You can't use the "LINE INPUT Program" to
determine how many bytes this file consumes. LINE
INPUT does not input the spaces in a. record which
follow the (mEl!) character.

EFFICIENCY, EFFICIENCY ...

We can get even more efficient. Our next di rect
access program consumes only 16 bytes. Erase
memory, KILL the old "OFFICE/DAT" file, a nd
type and RUN Program 7.

PROGRAM7
16 bytes

10 OPEN uou t •1 ' "OFFICE/DAT" , 8

20 FIELD •1, 3 AS AS, 5 AS BS
3111 LSET A$ = 11511

ll0 LSET BS = "PEN"

50 PUT • 1 ,
60 LSET AS : "-1 G"
70 LSET BS = "PAPER"
80 PUT • 1 , 2
90 CLOSE • 1

There are two new words in this program which
we'll talk about later. Let's see what the program
does first. SAVE it. Then erase memory and input
the file with this program:

FIELDED INPUT PROGRAM

10 OPEN "D" ' • 1 ' "OFFICE/DAT" , 8

20 FIELD •1, 3 AS A$, 5 AS 6$
30 R = R + 1
a 111 GET • 1 , R
50 PRINT "RECORD" R II : II ASi 8$

60 IF LOF<ll <> R THEN 30
70 CL OSE •1

By using FIELD and LSET, your program will
work the same as any direct access program. The
difference is what FIELD and LSET put in each
record :

PE N
record 1

I- 1 GP A PE RI
record2 ~ .£Ad.%

''OFF/CG/DAT'•

On ly the bare essentials . Here's how Program 7
works . ..

Line 20 tells the Computer to divide each record
into two fie lds. The first field is A$ and the second
is B$. These t wo fields will be the same size in
every record. A$ will a lways be 3 bytes and B$
will a lways be 5 bytes.

Now that we've established t his, we can put data
in each fie ld. Line 30 LSETs 5 in the A$ field
(SETs t he character 5 to the Left of A$). Since the
character 5 only consumes 1 byte and there are 3
bytes in the A$ field, there are 2 empty spaces at
the end of 5.

Notice we had to convert t he number 5 to a str ing
by putting quotes around it. You cannot LSET a
number. You must convert it to a string.

Line 40 LSETs the word PEN in t he B$ field.
Again, this leaves 2 empty spaces at the end of A$,
since PEN is 3 bytes.

Line 50 PUTs all this in record 1. Then, the same
process is repeated for record 2.

49

TRIMMING THE FAT OUT OF DIRECT ACCESS

Now let's look at the "Fielded INPUT Program'.'
Notice we used a FIELD line. RUN the program
without line 20 and see what happens . ..

Without a FIELD line, the Computer does not
know where the two fields are. Whenever you
input FIELDed records, use a FIELD line in your
input program.

Can you guess what the Computer would do if you
tried to LSET a long string, such as "123456789;'
into one of the fields? LOAD Program 7, change
line 30, and RUN the program. (First, SA VE the
"Fielded INPUT Program" with line 20 reinstated.):

30 LSET AS= "123456789"

Now load and RUN the " Fielded I NPUT
Program '.'

A$ is only 3 bytes. Therefore, the Computer only
LSETs the first 3 bytes of "123456789'.' It chops
the remaining characters off:

~~
,.,OFfJC8/DA1 ,.

✓
1111111111
record 1

Iii! ii H Hffl~
record2

1
\

~of
''OFF/C~/ DA,~

More on this later ... Before going on to the next
program, try writing your own FIELDed program:

50

PROGRAMMING EXERCISE
#9.1

Write a direct access program to
put a mailing list in a disk file.
Make each record 67 bytes with
these six ilelds:

1. Ian name-16 bytes
2. lirst name-10 bytes
3. address-16 bytes
4. city-10 bytes
6. state-a bytes
6. zip code-6 bytes

A NUMBER IS A NUMBER, . ..

Let's assume you will be putting a lot of numbers
in your disk file. Every number might be a differ
ent length:

- 5.237632 31 673285

However, it is very important that the Computer
not chop any of the digits off. This might entirely
change the number's value.

The word MKN$ will solve this problem:

PROGRAMS
20bytes

10 OPEN "D"' • 1 ' "OFFICE/DAT",
20 FIELD •1, 5 AS AS, 5 AS BS
30 LSET AS = MKNS(Sl
Ll0 LSET BS = "PEN"
50 PUT • 1 , 1
60 LSET AS = MKNS(-16)
70 LSET BS = "PAPER"
80 PUT •1, 2
90 CLOSE •1

10

The only difference between this program and pro
gram 7 is lines 10, 20, 30, and 60. This is what it
stores in your disk file:

TRIMMING THE FAT OUT OF OIRECT ACCESS

~
'AT"

--- .5-fo/.L
cortL ~5

c; ~/;/;y1!;;_-/h
recotd) ~--

.btd., of-
''orr/C!E/OAT,.

MKN$ converts a number to a coded string.
Regardless of how long the number is, MKN$ will
always convert it to a string that is five bytes long.

For example, change line 30 to LSET a number
with more than five digits:

30 LSET A$= MKN$(123456789l

Erase memory, KILL "OFFICE/DAT;' and type
and RUN the program. This is what it stores in
your disk file:

To read this program in, you need to decode the
string. LOAD the "Fielded INPUT Program" and
make these changes to it:

10 OPEN "D" I #l 1 "OFFICE/DAT" I 10

20 FIELD #11 5 AS A$, 5 AS 5$

50 PRINT " RECORD" R 11 :" i Cl,JN(A$ l i 5$

and RUN it ... CVN (in line 50) decodes A$ to the
number it represents .

Note: The Computer only sees the first 9 digits of a
number. It rounds the rest off

PROGRAMMING
EXERCISE #9.3

Write. ,i flelded direct access pro
gram wbicb. will store tb.e popula
tions of all tb.e countries. Make
eacb. record contain 16 bytes witb.
these two fields:

1. country-JO bytes
2. population-5 bytes

PROGRAMMING
EXERCISE #9.4

Write a program wb.icb. will input
the file you created in Exercise
#9.3.

0 CHAPTER CHECKPOINT

1. If you do not specify the record lengtb, bow
many bytes will eacb record contain?

2. Why must you include a FIEW line wben
you LSET your data?

3. How many bytes will MKN$ convert a nwn
ber in~?

51

SHUFFLING DISK FILES
(Merging programs, using many buffers)

Because storing and retrieving disk files is so easy,
you will want to use them as much as you can. In
this chapter, we're going to talk about some spe
cial ways you can use them.

MERGING PROGRAM FILES

With the first method, you can build a program
out of related program "modules" SAVEd on disk.
You can then MERGE any of these program files
with whatever program you have in memory.

Type and SAVE these two related programs:

10 REM AGE CONVERSION TO MONTHS
20 N = N * 12
30 A$ = STR$(Nl + " MONTHS"
SAVE "MONTHS/AGE", A ~

10 REM AGE CONVERSION TO WEEKS
20 N = N * 52
30 A$ = STR$ < N l + " WEEKS 11

SA% "WEEKS/AGE", A (ENTER)

Be sure to type the A when you SAVE these pro
grams. We'll explain why later . .. Erase memory.
Now put this program in memory:

5 INPUT "TYPE YOUR AGE" i N

40 PRINT "YOU HA% Lil.lED" A$

and combine it with one of the programs you
SA VEd. Type:

MERGE "MONTHS/AGE" (ENTER)

LIST the program ... The Computer has MERGEd
"MONTHS/AGE" with the program you have in
memory. Notice the line numbers are the same as
they were in each individual program.

At this point, this is the program you have in
memory:

5 INPUT "TYPE YOUR AGE"i N

10 REM AGE CONVERSION TO MONTHS

20 N = N * 12

53

SHUFFLING DISK FILES

30 A$= STR$(Nl + " MONTHS"
40 PRINT "YOU HAVE LIVED ABOUT" A$

MERGE "WEEKS/AGE" with it by typing MERGE
"WEEKS/AGE" CENilID. Then LIST the MERGEd
program.

Notice that lines 10, 20, and 30 of the program you
had in memory were replaced by lines 10, 20, and
30 of the "WEEKS/AGE" program.

The line numbers tell the Computer how to merge
the two programs. When there is a conflict of line
numbers (two line 10s), the line from the disk file
prevails.

Now we'll get technical (for those of you who are
interested). What the Computer normally writes
in your disk file is the ASCII code for each char
acter of data. For example, it writes the word AT
with two codes - the ASCII code for "A" (65) and
the ASCII code for "T" (84). (The ASCII codes are
all listed in Appendix D).

However, when it SAVEs a program, it writes the
BASIC words differently. To save space, it com
presses each BASIC word into a one-byte "binary"
code.

You can't MERGE a file which contains these
binary codes. This is why we had you type the A
when you SA VEd the two programs above. The A
tells the Computer to write the ASCII codes for
each BASIC word rather than the binary code.

By checking the directory, you can see if the data
in your files are in ASCII or binary codes. If there
is an "A" in the fourth column, it's all in ASCII
codes. A "B" indicates that some of the words are
in binary codes.

Note: Try typing 11ERCE "110NTHS/ACE", R (ERIEB).
The R tells the Computer to RUN the program after
it's MERGEd.

USING MORE BUFFER SPACE

When you start-up your disk system, it sets aside
two buffer areas in memory for disk communica
tion. You can use either or both of them for read
ing or writing data to a disk file.

54

Up to now, that's all we've used-buffers # 1 and
#2. But, as we've said earlier, you can use up to 15
disk buffer areas.

To use more than 2 buffers, you must first reserve
space in memory for them. To do this, use the word
FILES. For example, FILES 3 reserves 3 buffers.

Making use of all these buffers will greatly sim
plify your programs. For example, let's assume
you own a computer school. To organize it, you
first put all your students in a file named "COM
PUTER/SCH'.' Erase memory, type and RUN:

10 OPEN 11011 f #l I "COMPUTER/SCH"
20 FOR X = 1 TO G

30 READ A$
ll0 PRINT # 1 I A$
50 NE)<T X
60 CLOSE •1
70 DATA JON, SCOTT I CAROLYN
80 DATA DONNA, BILL, 606

Now you can write this program to assign the stu
dents to a BASIC or assembly-language class.
Erase memory and type this "Class Assignment
Program":

CLASS ASSIGNMENT PROGRAM

10 FILES 3
20 OPEN "O", •1, "BASIC/CLS"
30 OPEN "0", •2, "ASSEMBLY/CLS"
40 OPEN "I", •3, "COMPUTER/SCH"
50 IF EOFC3) = -1 THEN 120
60 INPUT •3, ST$
70 PRINT: PRINT ST$
80 INPUT "(1) BASIC OR 12) ASSEMBLY

LANGUAGE" i R
90 IF R > 2 THEN 80
100 WRITE •R, ST$
110 GOTO 50
120 CLOSE •1
130 CLOSE •2
1£10 CLOSE •3

RUN it. After assigning all the students to a class,
you can print a class roster with this program.
Erase memory, type, and RUN:

SHUFFLING DISK FILES

CLASS ROSTER PROGRAM

10 CLS
20 PRINT "BASIC/CLS" : PRINT
30 OPEN II I"' •l, "BASIC/CLS"
40 IF EOFtll = -1 THEN 80
50 INPUT •l, A$
60 PRINT A$
70 GOTO 40
80 CLOSE •1

Note: Substitute "ASSEMBLY!CLS" for "BASIC!
CLS" in lines 20 and 30 to print the class roster of the
assembly language class.

The "Class Assignment Program" has three buff
ers open at the same time. Because of this, you are
able to communicate with three disk files at the
same time.

Line 10 reserves memory for these three buffers.
Lines 20-40 OPENs the three buffers. Then, line
60 INPUTs a student from "COMPUTER/SCH"
into buffer #3.

Line 100 WRITEs the name of the student to
either buffer #1 ("BASIC/CLS") or buffer #2
("ASSEMBLY/CLS").

When all the students from buffer #3 ("STU
DENT/SCH") have been input, line 50 sends the
Computer to lines 120-140, which CLOSEs the
three buffers.

CROWDING THE BUFFER

There's one more thing you'll like about FILES.
Erase memory, type, and RUN:

10 CLEAR 400
20 FILES 1, 400
30 A$= "NORMALLY, YOU WILL NOT BE ABLE TO

PUT ALL OF THESE SENTENCES IN A DISK
FILE AT THE SAME TIME, "

40 8$ = "THIS IS BECAUSE, WITHOUT US ING
FILES, YOU WIL L ONLY HAVE A TOTAL OF
256 BYTES OF BUFFER SPACE, "

50 C$ = 11 IN TH IS PROGRAM, WE' VE RESERVED
400 BYTES OF BUFFER SPACE, 11

60 0$ = "TH IS WAY YOU CAN SEND ALL OF
THESE SENTENCES TO THE BUFFER AT THE
SAME TIME, "

70 E$ = "WHICH WILL OUTPUT THEM ALL TO THE
DI SK FILE AT ONCE, 11

80 OPEN "O", #l, "WORD/DAT"
80 WR ITE •1, A$, 8$, C$, 0$, E$
100 CLOSE •1

Want to input this paragraph? Add these lines and
RUN:

200 OPEN II I II t
1 ' "WORD /DAT"

210 INP UT # 1 I A$, 8$, C$, 0$ I E$
220 CLS
230 PRI NT A$; 8$ i C$i 0$i E$
240 CLOSE •1

Note: You can make the buffer as large as you want.

121 CHAPTER CHECKPOINT

1. How .must you SA VE a propa.m wblch you ·
wU1 want to MERGE?

2. When the two programs you're merging
both have Uae_ •ame line numbers, wbicb
linesprevaBt ·

8. How many buffer• does the Computer
.reserve when it •tarts-up? .

4. How much buller space does it nserve?
S. Wbat does FILES 8, 3000 mean?

55

l 1

TECHNICAL INFORMATION
(Machine-Language Input/Output)

In this chapter, we'll discuss the technical details
which are happening "behind the scenes:' You
don't need to know this information when you are
programming in BASIC. In fact, you won't even be
aware that these details are happening.

However, if you plan to write machine-language
disk programs or are simply interested in know
ing all you can, you'll definitely want to read this
chapter. We'll begin by discussing how the Com
puter organizes all the bytes on the disk. Then,
we'll show how to access them through machine
langu age programming and other advanced
techniques.

WHAT A DISK CONTAINS

When you power-up the Computer, it organizes
the bytes on the disk into tracks and sectors. Some
of these bytes control the system. The great major
ity of them are for data.

1.racks

The Computer organizes the disk into 35 tracks,
numbered 0-34. Each track contains approxi
mately 6,250 bytes.* 6,084 of them are divided into
sectors; the remaining are for system controls.

Byte#
0-31
32-6115
6116-6249*

Contents
System controls
Sectors
System controls

The system control bytes all contain the value of
4E (hexadecimal).

*the number of system control bytes at the end of
each track might vary slightly due to slight speed
variations.

Note: One byte contains 8 bits. Each bit contains
either a 1 or a 0. Normally, we express the contents of
these bits as a hexadecimal (base 16) number. For
example, if we say a byte contains the value of hexa•
decimal 4E, it contains this bit pattern -0100110.
You can find more information on hexadecimal and
binary number systems in a math textbook.

57

TECHNICAL INFORMATION

Sectors

Each track contains 18 sectors, numbered 1-18.
Each sector contains 338 bytes. 256 of them are for
data. The remaining bytes are for system controls.

Byte#
0-55
56-311
312-337

Contents
System controls
Data
System controls

The hexadecimal contents of the system control
bytes are:

Byte# Hexadecimal Contents
0-7 00
8-10 F5
11 FE
12 Track Number
13 00
14 Sector Number
15 01
16-17 Cyclic Redundancy Check (CRC)
18-39 4E
40-51 00
52-54 F5
55 FB

312-313 Cyclic Redundancy Check (CRC)
314-337 4E

HOW THE DATA IS ORGANIZED

Each track contains 4,608 bytes which the Com
puter can use for data:

18 sectors per track
x 256 data bytes per sector
4,608 data bytes per track

The data bytes in the 17th track contain the disk's
directory. The data bytes in the remaining 34
tracks are for disk files:

Track#
0-16
17
18-34

Disk Files

Contents of Track's Data Bytes
Disk Files
Disk Directory
Disk Files

The Computer divides the 34 tracks for disk files
into 68 granules. Since each track contains two
granules, one granule is 2,304 bytes long:

58

9 sectors in ½ track
x 256 data bytes per sector

2,304 bytes in a granule

The Computer uses granules to allocate space for
disk files in 2,304-byte clusters. Thus, if a file con
tains 4,700 bytes, the Computer allocates 3 gran
ules (6,912 bytes) of disk space for it.

The location of the 68 granules, numbered 0-67, is
as follows:

Track 0, Sectors 1-9 Granule 0
Track 0, Sectors 10-18 Granule 1
Track 1, Sectors 1-9 Granule 2 . .

• .
• .

Track 16, Sectors 10-18 Granule 33
Track 17, Sectors 1-18 Directory
Track 18, Sectors 1-9 Granule 34

• •
• • . •

Track 34, Sectors 10-18 Granule 67

Note: The minimum size of a disk file is OM granule
or 2,304 bytes. A disk will hold a maximum of68 disk
files.

Disk Directory

The directory track (track 17) contains a file allo
cation table and directory entries. The sectors on
this track which contain this information are:

Sector # Contents
2 File allocation table
3-11 Directory entries

The remaining sectors in the directory track are
for future use.

Directory Entries

The 9 sectors of the directory containing directory
entries (sectors 3-11) will hold up to 72 entries.
Each entry is 32 bytes long and contains:

TECHNICAL INFORMATION

Byte # Contents

0-7

8-10

11

12

13

14-15

Filename, left justified, blank-filled.
If byte 0 = 0, the file has been deleted

and the entry is available.
If byte 0 = FF (hexadecimal), the

entry (and all following entries) have
not yet been used.

Filename extension, left justified,
blank-filled.

File Type
0 = BASIC program
1 = BASIC data file
2 = Machine-language program
3 = Text Editor source file

ASCII flag
0 = the file is in binary format
FF (hexadecimal) = the file is in

ASCII format

The number of the first granule in the
file (0-67).

The number of bytes in use in the last
sector of the file.

16-31 Reserved for future use.

File Allocation Table

Sector 2 of the directory contains a file allocation
table for each of the 68 granules on the disk. This
information is located on the first 68 bytes of the
sector. The remaining bytes contain zeroes:

Byte#
0-67
68-255

Contents
Granule information
Zeroes

Each of the first 68 bytes corresponds with a gran
ule. For example, byte 15 corresponds with gran
ule 15.

These bytes will either contain a value of FF, 0-43,
or C0-C9 (hexadecimal):

FF

00-43

C0-C9

The corresponding granule is free. It is
not part of a disk file.

The corresponding granule is part of a
disk file. The value, converted to dec
imal, points to the next granule in the
file. For example, if the value in a byte
is 0A, 10 is the next granule in the file.

The corresponding granule is the last
granule in the file. The value contained
in bits 0-5 of this byte tells how many
of the sectors in that granule are part
of the disk file. (Bits 7 and 8 both equal
1.)

SKIP FACTOR

The Computer reads or writes data to the disk one
sector at a time. Between sector reads or writes, it
does some processing.

The disk does not stop and wait for the Computer
to do this processing. It spins continuously.

For example, the Computer might read Sector 1
first. But by the time it's finished processing Sec
tor 1, the disk will have spun to Sector 6.

To allow for this time differential, the Computer
sets a "skip factor" of 4 when it formats the disk.
This notes on the disk that the computer should
skip 4 "physical" sectors between each "logical"
sector:

PHYSICAL LOGICAL
SECTOR SECTOR

1 1
2 12
3 5
4 16
5 9
6 2
7 13
8 6
9 17
10 10
11 3
12 14

59

TECHNICAL INFORMATION

PHYSICAL LOGICAL
SECTOR SECTOR

13 7
14 18
15 11
16 4
17 1 5
18 8

Thus, after reading Sector 1, the Computer will
skip "physical" sectors 2, 3, 4, and 5. The second
"logical" sector it reads will be "physical" Sector 6.

A skip factor of 4 is the optimum setting for
BASIC LOADs and SAVEs. However, if you're not
using BASIC, you might be able to use a faster
skip factor. For example:

DSK I Ni lil, 3

tells the Computer to skip 3 physical sectors
between each logical sector.

Note: It's difficult to determine the optimum skip fac
tor. We recommend you leaue it at 4 unless you haue
a good understanding of how it works.

MACHINE-LANGUAGE DISK
PROGRAMMING

The disk system contains a machine-language
routine called DSKCON which you can call for all
disk input/output operations. To call this routine,
you need to write instructions to the Color Com
puter's 6809 Microprocessor.

See "Using Machine-Language Subroutines" with
Color BASIC in Getting S tarted with Color BASIC
for the procedures to use in accessing a machine
language subroutine. See 6809 Assembly Lan
guage Programming, by Lance Leve ntha l
(published by Osborne/McGraw-Hill) for the spe
cific 6809 instructions.

Information on DSKCON

DSKCON's entry address is stored in locations
C004 and C005 (hexadecimal). You can call it with
this assembly-language instruction:

60

JSR [$C00Lll

DSKCON's parameters are located in six memory
locations, organized as follows:

DCOPC RMB 1
DCDRV RMB 1
DCTRK RMB 1
DSEC RMB 1
DCBPT RMB 2
DCSTA RMB 1

The address of the first, DCOPC, is contained in
locations C006 and C007 (hexadecimal). You can
use the first five memory locations to pass param
eters to DSKCON. DSKCON returns a status byte
to the sixth location, DCSTA.

These are the parameters you can pass to the first
five memory locations:

DCOPC
0
1
2
3

Operation Code
= Restore head to track 0
= No operation
= Read sector
= Write sector

DCDRV Drive Number
0 to 3

DCTRK - '!rack Number
0 to 34

DCSEC - Sector Number
1 to 18

DCBPT - Buffer Pointer
the address of a 256-byte buffer. For read
sector, the data is returned in the buffer.
For write sector, the data in the buffer is
written on the disk.

This is the meaning of the status byte which the
DSKCON routine returns to location DCSTA:

DCSTA-Status
Bit 7 = 1 Drive Not Ready
Bit 6 = 1 Write Protect
Bit 5 = 1 Write Fault
Bit 4 = 1 Seek Error or Record Not

Found
Bit 3 = 1 CRC Error
Bit 2 = 1 Lost Data

TECHNICAL INFORMATION

If all the bits contain 0, no error
occurred. (See the disk service manual
for further details on the error bits)

After returning from DSKCON, you can turn off
the drive motor by putting the value of O in the
memory location FF40 (hex).

Sample Programs Using DSKCON

This program uses DSKCON to restore the head
to track 0:

R LOX $C00G

CLR ,X
LOA Ill

STA 1 ,X
JSR [$Cl1Jl1JQJ
LOA 11$00
STA $FF40
TST G ,){
BNE ERRORS
RTS
LOA 11$Q5
STA $QlD
RTS

SET X AS A POINTER TO THE
PARAMETERS
DCOPC =0 FOR RESTORE
DCDRV =1 TO SELECT DRIVE
ONE

CALL DSKCON
TURN OFF THE DRIVE MOTOR

CHECK FOR ERRORS
GO REPORT THE ERRORS

"E" FOR ERROR
TOP RIGHT OF THE DISPLAY

This program uses DSKCON to read track 3, sec
tor 17 of drive O into memory locations 3800
through 38FF:

LDX $C00G SET X AS A POINTER TO THE
PARAMETERS

LOA 112 DCOPC =2 FOR READ A SECTOR
STA ,X
CLR 1 ,X SELECT DRI\.JE l1J
LOA 113 SELECT TRACK 3
STA 2,X
LOA 111 7 SELECT SECTOR 17
STA 3,X
LOU #$3800 DCB PT =3800 (HE>(l FOR

STORING DATA
STU a,x
JSR ($C00aJ CALL DSKCON
LOA 11$00 TURN OFF THE DR l lJE MOTOR
STA $FF40
TST 6 ,){ CHECK FOR ERRORS
BNE ERRORS GO REPORT THE ERR ORS

RTS
LOA 11U5

STA $410
RTS

"E" FOR ERROR
TOP RIGHT OF THE DISPLAY

Note: DSKCON preserves the contents of all registers
except CC.

You can write a similar program to write to a sec
tor by setting DCOPC to 3 instead of 2.

Saving a Machine-Language
Program

You can use the SAVEM command to store a
machine-language program on disk. You need to
specify where in memory the program resides (its
starting and ending addresses). You also need to
specify the address where it should be executed.
Use the hexadecimal numbers for all of these
addresses.

For example, let's assume you have a machine
language program which resides in addresses
5000-5FFF of memory. The address where it
should be executed is 500A. You would store this
program on disk by typing:

SAVEM "PROG/MAC", &H5000, &H5FFF, &H500A

To load it back into memory, you could use the
LOADM command:

LOADM "PROG/MAC"

This would load "PROG MAC" back into memory
locations 5000-5FFF. The Computer would begin
executing it at location 500A.

If you want to load it into a different memory loca
tion, you could specify an offset address to add to
the program's loading address. For example:

LOADM "PROG/MAC", 1000

would load "PROG/MAC" into memory locations
6000-6FFF. The Computer would begin executing
it at address 600A.

61

TECHNICAL INFORMATION

SPECIAL INPUT/OUTPUT
COMMANDS

BASIC offers two special input/output commands.
These commands input and output data directly to
a particular sector. They do this through bypass
ing the entire disk's filing system.

The first, DSKI$, inputs the data from the sector
you specify. This is its format:

DSKI$ drive number, track, sector, string vari
ablel, string variable2

The first 128 bytes of the sector are input into
string variablel. The second 128 bytes are input
into string variable2. For example:

OSK I$ 111 , 17 , 1 , A$, 6$ (ENTER)

inputs the contents of sector 1, track 17 of the disk
in drive O. It inputs the first 128 bytes into A$ and
the second 128 bytes into B$. After typing this
command, you can display the contents of this sec
tor with:

PRINT A$i 6$ (ENTER)

Since DSKI$ will read any sector on the disk, it is
the only BASIC command which will read the
directory sector. This sample program uses DSKI$
to search the directory for filenames with the
extension "DAT":

1111 FOR){=3 TO 11
2111 OSK!$ 111,17,X,A$,B$
3111 C$ =A$+ LEFT$(B$,127l
4111 NAM$(111l = LEFT$(C$,8l

62

5111 EXT$(111l = MID$(C$,9,3l
6111 FOR N=1 TO 7
7111 NAM$(Nl = MID$(C$,N*32+1 ,Bl
8111 EXT$(Nl = MI0$(C$,9+N*32,3)
9111 NEXT N
1111111 FOR N=111 TO 7
11111 IF E){T$(N) = "DAT" AND

LEFT$(NAM$(Nl tl)<:>CHR$(111) THEN PRINT
NAM$(N)

12111 ND(T N
13111 NE){T)·(

The second command, DSKO$, outputs data
directly to the sector you specify. Since it bypasses
the disk filing system, it will output data without
opening a file and listing its location in the direc
tory. For this reason you need to be careful:

1. not to output data over the directory sectors
unless you no longer plan to use the directory.

2. not to output data over other data you presently
have stored on the disk.

The format of DSKO$ is:

DSKO$ drive number, track, sector, stringl,
string2

Stringl will go in the first 128 bytes of the sector.
String2 will go in the next 128 bytes. For example:

DSKO$ 111, 1, 3, "FIRST STRING", "SECOND
STRING II (ENTER)

Outputs data to sector 3, track 1, on the disk in
drive 0. "FIRST STRING" will go in the first 128
bytes of this sector. "SECOND STRING" will go in
the second 128 bytes.

APPENDIXES

APPENDIX A.---------------------------

PROGRAMMING EXERCISE
ANSWERS

PROGRAMMING EXERCISE #5-1
1111 PRINT: PRINT "CHECKS FOR CAR EXPENSES"
2111 OPEN "I" ,111 ,"CHECKS"
3111 IF EOF (1) = -1 THEN 1111111
4111 INPUT 111 ,A$,B,C$
5111 IF C$ = "CAR" THEN 7111
8111 GOTO 8111
7111 PRINT: PRINT "CHECK PAYABLE TO:";A$
8111 PRINT "AMOUNT:";B
8111 GOTO 3111
1111111 CLOSE 111

PROGRAMMING EXERCISE #6.1
1111 OPEN "I", 111, "ANIMALS/DAT"
2111 OPEN "0", 112, "NEW/DAT"
3111 IF EOF(l) = -1 THEN 7111
4111 INPUT 111, A$
5111 WRITE 112, A$
8111 GOTO 3111
7111 CLOSE 111: CLS
8111 PRINT "INPUT ANIMALS YOU WANT TO ADD"
8111 PRINT "PRESS <ENTER> WHEN FINISHED"
1111111 INPUT A$
11111 IF A$= "" THEN 14111
12111 WRITE 112, A$
13111 GOTO 8111
14111 CLOSE 112
15111 KILL "ANIMALS/DAT"
18111 RENAME "NEW/DAT" TO "ANIMALS/DAT"

PROGRAMMING EXERCISE #6.2
1111 OPEN "I" , II 1 ' "ANIMALS/DAT"
2111 OPEN "O", #2, "NEW/DAT"
3111 IF EOF(I) = -1 THEN 1111111
4111 INPUT 111, A$
5111 PRINT: PRINT A$
8111 INPUT "DO YOU WISH TO DELETE THIS"; R$
7111 IF R$ = "YES" THEN 8111
8111 WRITE 112, A$
8111 GOTO 3111
1111111 CLOSE 111
11111 CLOSE 112
12111 KILL "ANIMALS/DAT"
13111 RENAME "NEW/DAT" TO "ANIMALS/DAT"

PROGRAMMING EXERCISE #6.3
1111 CLS: PRINT "DO YOU WISH TO -- "

2111 PRINT " (1) STORE A NEW FILE"
3111 PRINT "(2) SEE THE FILE"
4111 PRINT "(3) END"
5111 INPUT QI
8111 ON QI GOTO 8111, 13111, 42111
7111 GOTO 1111
8111 OPEN 11 0 II f #1 t "MEMBERS/DAT"

64

8111 GOSUB 43111
1111111 IF N$ = "" THEN CLOSE 111: GOTO 1111
11111 WRITE 111, N$, A$, P$
12111 GOTO 8111
13111 OPEN "I", 111, "MEMBERS/DAT"
14111 OPEN "0", 112, "TEMP/DAT"
15111 CLS : INPUT "DO YOU WANT TO CHANGE THE

FILE"; Q2$
18111 IF EOF(l) = -1 THEN 32111
17111 INPUT 111, N$, A$, P$
18111 PRINT: PRINT "NAME :" N$
18111 PRINT "ADDRESS :" A$
2111111 PRINT "TELEPHONE :" P$
21111 IF Q2$ = "NO" THEN 3111111
22111 PRINT: PRINT "DO YOU WISH TO:"
23111 PRINT "1) CHANGE THE ADDRESS?"
24111 PRINT "2) DELETE THE MEMBER?"
25111 PRINT "3) GO ON TO THE NEXT MEMBER?"
28111 INPUT N
27111 ON N GOTO 28111, 18111, 3111111
28111 GOTO 23111
28111 INPUT "INPUT NEW ADDRESS"; A$
3111111 WRITE 112, N$, A$, P$
31111 GOTO 18111
32111 PRINT: INPUT "DO YOU WISH TO ADD A NEW

MEMBER"; Q3$
33111 IF Q3$ = "NO" THEN 38111
34111 GOSUB 43111
35111 IF N$ = "" THEN 38111
38111 WRITE 112, N$, A$, P$
37111 GOTO 34111
38111 CLOSE 111, 112
38111 KILL "MEMBERS/DAT"
4111111 RENAME "TEMP/DAT" TO "MEMBERS/DAT"
41111 GOTO 1111

42111 END
43111 CLS: PRINT "PRESS <ENTER> WHEN FINISHED"

: PRINT
44111 INPUT "NAME OF MEMBER:"l N$
45111 IF N$ = "" THEN 48111
48111 INPUT "ADDRESS:"l A$
47111 INPUT "PHONE NUMBER:"; P$
48111 RETURN

PROGRAMMING EXERCISE 7.1
1111 OPEN "0", II 1 ' "NAMES/DAT"
2111 WRITE 111, "J. DOE"
3111 PUT 111 , 2
31 WRITE 111, "BILL SMITH"
32 PUT 111 , 3
34 GET 111, 3
38 INPUT 111 ' A$
38 PRINT A$
4111 CLOSE 111

__________________________ APPENDIX A

PROGRAMMING EXERCISE 7.2

This produces an FD - Bad File Data - error in line
36. The first field in record 2 is "FLIES;' a string. Line
36 INPUTs it into N, a numeric variable.

PROGRAMMING EXERCISE 7.3
10 OPEN "D", •1, "NAMES/DAT"
20 GOTO 70
30 FOR X = 1 TO 10
40 PRINT: PRINT "RECORD" X
50 GOSUB 180
60 NEXT X
70 INPUT "WHICH RECORDll-10)"; X
80 IF X > 10 THEN 170
90 IF X < 1 THEN END
100 GET • 1 , X
110 INPUT •1, N$, A$, C$, S$, 2$
120 PRINT: PRINT "RECORD" X
130 PRINT N$,,A$,,C$,,S$,,Z$
140 INPUT "DO YOU WANT TO CHANGE THIS"; R$
150 IF R$ = "YES" THEN GOSUB 180
160 GOTO 70
170 CLOSE •1: END
180
190
200
210
220
230

INPUT "NAME"; N$
INPUT "ADDRESS II o

' INPUT "CITY , u. . ' C$
INPUT "STATE:"; S$
INPUT II ZI p : II; 2$
WRITE #1 I N$ I A$ I

240 PUT • 1 , X
250 RETURN

A$

C$ I S$, 2$

PROGRAMMING EXERCISE #9.1
10 OPEN "D" ,•1 ,"MAIL/DAT" ,57
20 FIELD •1 ,15 AS LAST$,10 AS FIRST$,15 AS

ADDRESS$,10 AS CITY$,2 AS STATE$,5 AS ZIP$
30 R = R + 1
40 CLS
50 INPUT "LAST NAME";L$
60 INPUT "FIRST NAME";F$
70 INPUT "ADDRESS";A$
80 INPUT "CITY";C$
90 INPUT "STATE";S$
100 INPUT "ZIP CODE";Z$
110 LSET LAST$= L$
120 LSET FIRST$= F$
130 LSET ADDRESS$= A$

140 LSET CITY$= C$
150 LSET STATE$= S$
160 LSET ZIP$= 2$
170 PUT •1,R
18111 PRINT
190 INPUT "MORE DATAIY/Nl";AN$
200 IF AN$= "Y" THEN 30
210 CLOSE •1

PROGRAMMING EXERCISE #9.2
10 OPEN "D", •1, "MAIL/DAT", 57
2111 FIELD •1, 15 AS LAST$, 10 AS FIRST$, 15 AS

ADDRESS$, 10 AS CITY$, 2 AS STATE$, 5 AS ZIP$
30 R = R + 1
40 CLS
50 GET • 1 , R
80 PRINT LAST$ "," FIRST$
70 PRINT ADDRESS$
80 PRINT CITY$ "1

11 STATE$
90 PRINT ZIP$
100 PRINT
110 IF LOFl1l=R THEN 140
12111 INPUT "PRESS <ENTER> FOR NEXT NAME";E$
130 GOTO 30
14111 CLOSE •1

PROGRAMMING EXERCISE #9.3
10 OPEN "D" ••1,"POP" ,15
20 FIELD •1 ,10 AS COUNTRY$,5 AS POP$
30 R = R + 1
40 CLS
50 INPUT "COUNTRY" ;cs
80 INPUT "POPULATION" ;p
70 LSET COUNTRY$= C$
80 LSET POP$
85 PUT •1 ,R
9111 PRINT

= MKN$1Pl

100 INPUT "MORE DATAIY/N)";AN$
110 IF AN$= "Y" THEN 30
120 CLOSE •1

PROGRAMMING EXERCISE #9.4
10 OPEN "D", •1, "POP", 15
20 FIELD •1, 10 AS COUNTRY$, 5 AS POP$
30 R = R + 1
40 GET •1, R
50 PRINT COUNTRY$, CVN IPOP$l
80 IF LOFl1)<>R THEN 30
7111 CLOSE •1

65

APPENDIX 8 __________________________ _

CHAPTER2

CHAPTER CHECKPOINT ANSWERS

CHAPTER4

1. Unless the disk has been formatted, there is no way
to locate any given area on the disk.

2. The disk directory is an index of the names, loca
tions, and types of all the files on the disk.

3. A disk file is an individual block of information
stored on the disk, under a filename.

4. Information stored in memory will only be there
temporarily. It will be destroyed if the Computer is
turned OFF or if you execute a NEW, LOAD, DIS
KIN!, BACKUP, or COPY command. (We'll discuss
BACKUP and COPY in the next chapters). Infor
mation stored on disk will be there permanently. It
won't be destroyed if the Computer's turned off or if
memory is cleared. (Don't leave a disk in the drive
when you turn the Computer off. We'll explain why
in the next chapter.)

5. The only way to change the contents of a disk file is
by storing different information under the same
filename.

CHAPTER3

1. Turning the Computer ON or OFF while the disk is
in its drive may damage the disk.

2. Only felt tip pens may be used to write on the disk's
label. Hard point pens and pencils may damage the
disk and garble the information on it.

3. Error messages tell you that something is wrong
with either the program you are running or the last
command that you used.

4. "Write-protecting" is a way of protecting your disks
from alteration. It is done by putting a gummed label
over the write-protect notch. You can read from a
"write-protected" disk, but you can't write to it.

5. On a one-drive system, insert the source disk into the
drive and type BACKUP0 (ENTER). The Computer will
ask you to insert the destination disk and press
(ENTERJ. This procedure is repeated until the Com
puter prints OK. On a multi-drive system, type the
BACKUP command specifying the drive number
with the source disk and the destination disk. For
example, BACKUP O TO 1 backs up the source disk
(in Drive 0) to the destination disk (in Drive 1).

66

1. A file can be renamed with the RENAME command.
For example, RENAME "OLDFILE/NAM" TO
"NEWFILE/NAM" renames OLDFILE/NAM to
NEWFILE/NAM. You must specify the extension for
both filenames so the Computer can find them.

2. You can find out how much space you have remain
ing on the disk by typing PR I NT FREE< 0 l (ENTERJ. This
will tell you the number of granules left on the disk
in Drive 0. If you are running out of granules, you
might want to KILL a few files or switch to another
disk.

3. Unless otherwise specified, the Computer always
uses Drive 0. This can be changed by typing DRIVE
1, which enables you to access Drive 1 without hav
ing to specify the number in your command. (i.e.,
now DIR and DIRl would both get you the directory
of the disk in Drive 1.

CHAPTERS

1. Buffer #1 is a temporary storage area for informa
tion going between the disk and memory.

2. A disk file must be OPENed before any information
can go between the disk and memory.

3. A disk must be CLOSEd so that the information still
in the buffer will end up where it's supposed to and
so that the file can be reopened. All files must be
closed before you switch disks.

4. A file OPENed for input allows information to go
from the disk file into the memory of the Computer.
A file OPENed for output allows information to go
from memory to the disk file.

CHAPTER6

1. When you OPEN a "sequential access" file, you can
only OPEN it for "I" or "O" -not both. You can't out
put to a file opened for "I;' nor can you input from a
file opened for "0;'

2. No. The file must first be closed and then reopened
for input.

---------------------------APPENDIX B

CHAPTER7

1. Records are equal-sized divisions in your disk file
where you can put your data. Since each is the same
size, the Computer can use them to access your data
directly.

2. Fields are subdivisions of records.

3. In a sequential access file, the only locations the
Computer knows are the beginning and ending of
the file. In a direct access file, it can determine where
each individual record is (by the size of the records).

4. Since each record of the file has a known location, the
Computer can access it without going through the
preceding parts of the file, as it would if the file was
sequential.

CHAPTERS

1. The minimum size of a disk file is 2,304 bytes (one
granule). Since the Computer allocates disk space in
granules, a file can be no smaller than one granule.

2. The Computer first WRITEs the number's sign (a
minus sign if it's negative or a blank space if it's pos
itive). Then it WRITEs the number itself. Immedi
ately following the number, it WRITEs on trailing
blank space.

3. A string is written with quotation marks around it.

4. INPUT inputs only the data items listed, while LINE
INPUT inputs everything up to the (ENTER) character.

5. A comma causes the Computer to space over to the
next print column before printing another data item.

6. A semicolon causes the Computer to print the data
items immediately next to each other.

7. A string is printed simply as the string itself. It is not
enclosed in quotation marks.

CHAPTER9
1. The Computer will set the record length at 256 bytes.

2. The data must have a field with a specific length for
it to be LSET. This length is assigned in the FIELD
line.

3. MKN$ converts a number into a 5-byte coded string.

CHAPTER 10
1. You must type an A at the end of your SAVE com

mand if you plan to ever MERGE it with a program
in memory.

2. The line number of the program saved on disk
prevails.

3. The Computer reserves two buffers when you power
up.

4. The Computer reserves a total of 256 bytes of buffer
space when you power-up.

5. FILES 3, 3000 get the Computer to reserve 3 buffers
with a total of 3000 bytes of buffer space.

67

APPENDIX C---------------------------

SAMPLE PROGRAMS

SAMPLE PROGRAM #1
BALANCING YOUR CHECKBOOK

This program creates a master disk file which contains
all your checks and deposits for the entire year. You can
print them out by the month or the year. If you want to
use your printer, change the appropriate PRINT lines
to PRINT #-2. (See Chapter 21 in Getting Started
with Color BASIC).

10' Checkbook Pro9ram
20'
30' This Pro9ram Provides a
record of your checks,
40 ' dePO'.:-it'.:., and balan,:e'.:-.
The checks can be labeled
50' with an account number to
show to what expense
60' thev were Paid, such as
medical,rent,food,etc.
70' The pro9ram uses direct
addressin9,each file record
80 ' bein9 40 b·-..-te'.:- lon9, and
formatted as follows: 8
90' bvtes for the date, 4 bvtes
for the check or deposit
100' sliP number, 20 bvtes for
the reciPient of the check
110' 3 bvtes for the account
number, and 5 bvtes for the
120' amount of the check or
dePo'.:-it.
130'
140 CLEAR 1000
150 DIM CH.,$(50)
160 CLS
170 PRINT@ 107,"SELECTIONS:"
180 PRINT@ 162,"1) ADD CHEC.,S
TO YOUR FILE"
190 PRINT@ 194,"2) LIST YOUR
CHECKS,DEPOSITS,"
200 PRINT@ 229,"AND BALANCES"
230 PRINT@ 322,"3) END JOB?"
240 PRINT@ 394, "(1,2, OR 3)"
2~d2l AN$= I M,EY$
260 IF AN$="" THEN 250
270 ON VAL(ANS) GOSUB 310,700,
1080,1560
280 GOTO 160
290 '
300'
310' This subroutine inputs
the data.
320'

68

330 OPEN "D",#1,"CHECKS/DAT",40
340 FIELD #1,8 AS DATES,4 AS CHNO$,
20 AS PDTOS,3 AS ACNOS,5 AS AMT$
350 REC= LOF(l)
360 REC= REC+ 1
370 CLS
380 PRINT@ 64, "CHECK OR
DEPOSIT(C/D)"
390 AN$= INKEY$
400 IF ANS= "D" THEN 430
410 IF ANS= "C" THEN 490
420 GOTO 390
430 INPUT "DEPOSIT DATE
(MM/DD/YY)";D$
440 INPUT "DEPOSIT SLIP NUMBER
<NNNN)";C$
450 PS=""
460 INPUT "ACCOUNT NUMBER<NNN>";A$
470 INPUT "AMOUNT OF DEPOSIT";AMT
480 GOTO 550
490 INPUT "CHECK DATE<MM/DD/YY)";D$
500 INPUT "CHECK NUMBER(NNNN)";C$
510 INPUT "PAID TO";PS
520 INPUT "ACCOUNT NUMBER(NNN)";A$
530 INPUT "AMOUNT OF CHECK";AMT
540 AMT= -AMT
550 LSET DATES= DS
560 LSET CHNOS = CS
570 LSET PDTOS = PS
580 LSET ACNOS = AS
590 LSET AMT$= MKNS(AMT)
600 PUT #1,REC
610 PRINT@ 320, "MORE INPUT(Y/N)"
620 AN$ = I N•,EYS
630 IF ANS= "N" THEN 660
640 IF ANS - "Y" THEN 360
650 GOTO 620
660 CLOSE #1
670 RETURN
680'
690 '
700' This subroutine balances the
checkbook and outputs the results.
710'
720 OPEN "D",#1,"CHECKS/DAT",40
730 FIELD #1,8 AS DATE$,4 AS CHNOS,
20 AS PDTOS,3 AS ACNOS,5 AS AMT$
740 CLS
750 PRINT@ 160,"DO YOU WANT A
LISTING FOR A MONTH OR FOR THE"
760 PRINT@ 192,"WHOLE YEAR? (Y/M)"
770 INPUT A$
780 IF A$= "M" THEN PRINT@ 254,

---------------------------APPENDIXC

"WHAT MONTH<MM)":INPUT MN$
790 BAL= 0
800 FOR REC= 1 TO LOF<1>
810 GET #1,REC
820 BAL= BAL+ CVN<AMT$)
830 IF A$= "M" AND LEFT$(DATE$,2)
<> MN$ THEN 1030
8L•0 CLS
8:.(7.) IF PDTO$ = 11

THEN 930
860 PRINT@ 64, "DATE OF CHECK:":
PRINT@ 84,DATE$
870 PRINT "CHECK NUMBER:":PRINT
@ 116,CHNO$
880 PRINT "PAID TO:":PRINT@
148,PDTO$
890 PRINT@ 160,"ACCOUNT NUMBER:":
PRINT@ 180,ACNO$
900 PRINT "AMOUNT OF CHECK:":PRINT
@ 211,USING "$$###.##";-CVNCAMT$)
910 PRINT "BALANCE:":PRINT@ 243,
USING 11 $$###.## 11.;BAL
9:/0 GOTO 980
930 PRINT:PRINT:PRINT "DATE OF
DEPOSIT:":PRINT@ 85,DATE$
940 PRINT "DEPOSIT SLIP NUMBER:":
PRINT@ 117,CHNO$
950 PRINT "ACCOUNT NUMBER: 11 :PRINT
@ 149,ACNO$
960 PRINT "AMOUNT OF DEPOSIT:":
PRINT@ 180,USING "$$###.##";
CVN<AMT$)
970 PRINT "BALANCE:":PRINT@
212,USING "$$###.##";BAL
980 PRINT@ 256, "PRESS <ENTER>
FOR NEXT RECORD OR <R> TO RETURN
TO 'SELECTIONS'"
990 AN$ = I N~\EY$
1000 IF AN$= CHR$(13) THEN 1030
1010 IF AN$= "R" THEN 1040
1020 GOTO 990
11.2)30 NEXT REC
1 Wt0 CLOSE # 1
1050 RETURN
15-4-0 '
1550'
1560 • This subroutine terminates
the Pr• og r·am.
1 "",70 •
1580 END

SAMPLE PROGRAM #2
SORTING YOUR CHECKS.
This subroutine will be especially helpful at tax time.
It takes the checks file which you created in "Sample

Program #1" and sorts all the checks by account. Want
to know exactly how much you spent on medical bills
(or business expenses, contributions, etc.)? This pro
gram will let you know right away.

210 PRINT@ 258,"3) SORT YOUR
CHECKS BY"
220 PRINT@ 293,"ACCOUNT NUMBER?"

" 230 PRINT@ 322,"4) END JOB?·
240 PRINT@ 394, "<1,2,3,0R 4>•
270 ON VAL(AN$) GOSUB 310,700,
1080,1560
1060'
1070'
1080' This subroutine sorts the
checks from those with the
1090' smallest account numbers
to the lar9est account numbers
1100' usin9 a "bubble sort".
Each check is handled as one
1110 • data strin9 to make the
swaps ea::.ier·.
1120 '
1130 OPEN "D",#1,"CHECKS/DAT•,40
1140 FIELD #1,40 AS INFO$
1150 FOR I= 1 TO LOF(1)
1160 GET # 1 , I
1170 CHK$(I) = INFO$
1180 NEXT I
11 90 CNT = 0
1200 FOR I= 1 TO LOF(1) - 1
1210 IF MIDS(CHK$(I),33,3) <=
MID$(CHKS(I+1),33,3) THEN 1260
1220 TEMP$= CHK$(I)
1230 CHKS<I> = CHKS(I+l)
1240 CHK$(I+1) = TEMPS
1250 CNT = 1
1260 NEXT I
1270 IF CNT = 1 THEN 1190
1280 CLS
1290 PRINT@ 194,"WHAT ACCOUNT
NUMBER<NNN/ALL)"
1300 INPUT AN$
1310 FOR I= 1 TO LOF(l)
1320 IF AN$<> "ALL" AND AN$<>
MIDS(CHKS(I),33,3) THEN 1510
1330 CLS
1340 PRINT@ 66,"ACCOUNT NUMBER:"
:PRINT@ 85,MID$(CHK$(I),33,3)
1350 IF MIDS(CHKS(I),13,20) =
" "THEN 1410
1360 PRINT@ 98, "DATE OF CHECK:":
PRINT@ 117,LEFT$(CHKS(I),8)
1370 PRINT@ 130,"CHECK NUMBER:"
:PRINT@ 149,MID$(CHKS<I>,9,4)
1380 PRINT@ 162,"PAID TO:":

69

APPENDIX C _________________________ _

PRINT@ 181,MID$(CHK$(I),13,20)
1390 PRINT@ 194,"AMOUNT OF CHECK:":
PRINT@ 212,USING "$$###.##";
-CVN(RIGHT$(CHK$(I),5))
14017.J GOTO 1440
14117.J PRINT@ 98,uDATE OF DEPOSIT:":
PRINT@ 117,LEFT$(CHK$(I),8)
14217.J PRINT@ 1317.J,"DEPOSIT NUMBER:":
PRINT@ 149,MID$(CHK$CI>,9,4)
1430 PRINT@ 162,"AMOUNT
OF DEPOSIT:":
PRINT@ 180,USING "$$###.##";
CVN(RIGHT$(CHK$(I),5))
1440 PRINT @290, "(PRESS <ENTER>
TO SEE NEXT"
1450 PRINT @322, "RECORD OR <R> TO
RETURN TO"
1460 PRINT@ 354,"'SELECTIONS')"
14717.J A2$ = INKEY$
1480 IF A2$ = CHR$(13) THEN 1510
14917.J IF A2S = "R" THEN 15217.J
1:)00 GOTO 1470
15117.J NEXT I
1 ::,20 CLOSE # 1
1530 RETURN

SAMPLE PROGRAM #3
MEMBERSHIP LIST

Want to store the names and telephone numbers of all
your club members? This program puts them all in a
disk file in alphabetical order. Add a few lines to it, and
it will store their addresses and phone numbers also.

10' Create list and alphabetize.
217.J ,

30' The obJect of this pro9ram
is to create a file of
40' alPhabeticallv arran9ed names
and Phone numbers. The
::dZ1 ' name::. and number·::. ar·t=., fir·::. t
input into an arrav,ARRAYS(I),
60' then Put into alPhabetical
order, and finallv Put into
70' a di::.k file callE-d "NAMES/NOS".
The file is 35 bvtes
E.HZJ' lon9, all of it allotted to
one variable,INFOS. The
90' file can be added to an··..-time
after its creation and will
1017.J' automaticallv be alphabetized.
The Pro9ram can be used
110 • in con._iunction uJith thE- "Sear·ch
a list" Pro9ram (sample

70

120 ' Pr·i:,9r·am #4).
130 '
140 CLEAR 1050
150 DIM ARRAY$(30)
160 OPEN "D",#1,"NAMES/NOS",35
1717.J FIELD #1,35 AS INFOS
180'
190' First the file is checked
to see if there are anY
200' records currently on it.
210'
2217.J IF LOF(1) = 0 THEN I=1:GO TO 310
230 FOR I=l TO LOF(1)
2 1+0 GET #1, I
250 ARRAYS(!) = INFOS
260 NEXT I
270'
280' The new names and numbers
are inPut and then concatenated
29©' into 1 strin9,ARRAYS(I)
301i' '
3l0 CLS
320 PRINT@ 64
3317.J INPUT "LAST NAME";LS
3417.J INPUT "FIRST NAME";FS
350 INPUT "MIDDLE INITIAL";MS
360 INPUT "AREA CODE";AS
3717.J INPUT "PHONE NUMBER";~$
380 ARRAYS(!) = LEFTS(LS+","+FS+" "
+MS+" ",24)+A$+PS
390 PRINT@ 288,"MORE DATA (Y/N)?"
400 AN$ = I M~EYS
410 IF ANS - "Y" THEN I=I+l :
[,OTO 310
420 IF AN$ - "N" THEN 470
4:317.J GOTO 4017.J

L1::d2) ' Then, ARRAY$(!) i::. Put into
alphabetical order.
L1-60 '
470 FOR J=l TO I
L1B0 FOR K=J TO I
490 IF ARRAY$(J) < ARRAYS(K)
THEN 530
5017.J TEMP$= ARRAY$(J)
510 ARRAY$(J) = ARRAYS(K)
5217.J ARRAYS(K) = TEMP$
:iJ0 NEXT ~~
540 NEXT J

:i60 ' Fina 11 v, the 1 i ::.t i ::. tr·an::.-..
ferred into "NAMES/NOS".
~::.70 '
5B0 FOR N== 1 TO I
590 LSET INFO$= ARRAYS(N)
600 PUT #1,N

__________________________ APPENDIXC

610 NEXT N
620 CLOSE #1
630 END

SAMPLE PROGRAM #4
SEARCH FOR A NAME

Since the file you created in "Sample Program #3" is
already in alphabetical order, you can immediately
find the name you want. This program shows how.

1 0 ' Se a r· c h a l i s. t

3(2) • (NOTE: This. Pr·o9r·am r·e·=iuir·es.
that a file called "NAMES/NOS
40 • exists--see "Create list and
alPhabetize--SamPle Pro9ram #3)
50, This Pro9ram searches a disk
file which holds names and
60 • Phone numbers in alphabetical
order. The file is a direct
70, access file called "NAMES/NOS",
is 35 bvtes long, and
80, is formatted as follows: 24
bvtes for the name; 3 bvtes
9~:J , for· the ar·ea code; 8 bytes.
for the Phone number. The
100, Pro9ram uses iterative
sear·chin9.
1 H!'.I '
120 OPEN "D",#1,"NAMES/NOS",35
130 FIELD #1,24 AS NAMES,3 AS
AREAS,8 AS PHONE$
140 CLS
150 PRINT@ 99 ,"ENTER NAME(LAST,
FI l~ST MI)
160 LINE INPUT NM$
17(7.J '
180, Initialization of variables
190
2t10 Nl $ = NM$
210 IF LENCNMS) < 24 THEN 800
220 IF LEN<NM$) > 24 THEN 820
230 FIRST== 1
240 MID= INT<<LOF(l)+l)/2)
250 LAST= LOF(1)
260 CNT = 0
270,
280' Pro9ram checks the last
record first because it won•t
290 ' be checked in the r·e9ular·
:::.ear·ch
300,
310 GET #1,LAGT

320 IF NAME$= NM$ THEN 450
330,
340, Pro9ram keeps comparing NM$
with NAME$ from record MID
350 • until NM$ is found or enou9h
records have been seen
360, to show that it isn't in
the file
370,
380 GET #1,MID
390 IF CNT > (LOF(l)+l)/2 THEN 710
400 IF NAME$< NM$ THEN 570
410 IF NAME$> NM$ THEN 640
420 '
430, When NM$ is found it is
Pr·inted out
4'+0 7

450 CLS
460 PRINT@ 104,NAME$
470 PRINT@ 136,"(";AREA$;")";PHONE$
480 PRINT@ 195,"PRESS <ENTER>
TO CONTINUE,"
490 PRINT@ 227,"ELSE PRESS <Q>
TO G!UIT"
500 AN$= INKEY$
510 IF AN$= "Q" THEN CLOSE:END
520 IF AN$= CHR$(13) THEN 140
5:30 GOTO 500
540'
550, SubPro9ram for when NAMES<NM$
5 612) '
570 FIRST= MID
580 MID= <MID+LAST)/2
590 CNT = CNT + 1
600 GOTO 380
610,
620' SubPro9ram for when NAMES>NM$
630,
6L1-0 LAST = MID
650 MID= <MID+FIRST)/2
660 CNT = CNT + 1
670 GOTO 380
680 7

690, SubPro9ram for when NM$ is
not found
700'
710 Cl...S
720 PRINT@ 100,N1$;" NOT FOUND"
730 PRINT@ 132, "TO TRY AGAIN
PHESS <ENTER>"
740 AN$= INKEY$
750 IF AN$="" THEN 740
760 GOTO 1'+0
T/0 ,
780, SubPro9rams for modifYin9
NM$ to a 20 bYte string

71

APPENDIXC _________________________ _

790'
800 NM$= NM$+" "
810 GOTO 210
820 NM$= LEFT$(NM$,24}
830 GOTO 220

SAMPLE PROGRAM #5
UPDATE THE LIST

Update anything you want in the file you created in
"Sample Program #3?' You can do it in a hurry with
this program.

10' Edit Your names file
20'
3~' The obJect of this Pro9ram
is to edit the "NAMES/NOS" file
40 ' fr·om "Cr·eate 1 ist and al Pha
betize" (SamPle Pro9ram #3}. The
50' Pro9ram can either retain a
r·ecor·d,, chan9e one of the var·iable~.
60' in that r·ecor·d, or· delete the
record entirely from the file.
70'
80 CL.S
90 PRINT@ 106,"SELECTIONS:"
100 PRINT@ 168,"1} EDIT RECORD"
110 PRINT@ 200,"2) DELETE RECORD"
120 PRINT@ 232,"3} END JOB"
130 PRINT@ 299,"1,2, OR 3"
140 ANS= INKEY$
150 IF ANS="" THEN 140
160 ON VAL.CAN$) GOSUB 180,590,850
170 GOTO 80
180 OPEN "D",#1,"NAMES.NOS",35
190 FIELD #1,24 AS NAMES,3 AS AREAS,
8 AS PHONES
200 FOR I=1 TO LOF(l)
210 GET #1,I
220 CLS
230 PRINT@ 68,"RECORD NUMBER:";I
240 PRINT@ 100, "NAME:";NAMES
250 PRINT@ 132, "AREA CODE:";AREAS
260 PRINT@ 164, "PHONE NUMBER";
PHONES
270 PRINT@ 228,"EDIT THIS
RECORD? (Y /N)"
280 AN$= INKEYS
290 IF ANS= "Y" THEN 320

72

300 IF AN$= "N" THEN 560
310 GOTO 280
320 PRINT@ 260, "EDIT NAME? (Y/N)"
330 AN$= I N~\EYS
340 IF ANS= "N" THEN NM$= NAMES:
GOTO '+00
350 IF ANS= "Y" THEN 370
360 GOTO 330
370 LINE INPUT" NEW NAME";NMS
380 IF LENCNM$} < 24 THEN NM$=
NM$+" ":GOTO 380 ELSE 390
390 IF LENCNMS) > 24 THEN NM$=
LEFTS(NMS,24}
400 PRINT@ 292,"ED{T AREA
CODE? (Y/N}"
410 AN$ = IN~\EYS
420 IF AN$= "Y" THEN 450
430 IF AN$= "N" THEN A$= AREA$
GO TO 460
440 GOTO 410
450 INPUT" NEW AREA CODE";A$
460 PRINT@ 324, "EDIT PHONE
NUMBER? (Y /N)"
4 70 AN$ = I N~\EY$
480 IF AN$= "Y" THEN 510
490 IF AN$= "N" THEN PS= PHONE$
GOTO 520
500 GO TO 470
510 INPUT," NEW PHONE NUMBER";PS
520 LSET NAME$= NM$
530 LSET AREAS= AS
540 LSET PHONES= PS
:)50 PUT #1, I
560 NEXT I
::, 70 CLOSE # 1
580 RETUl~N
590 OPEN "D",#1,"NAMES.NOS",35
600 FIELD #1,24 AS NAMES,3 AS AREA$,
8 AS PHONES
610 OPEN "D",#2,"TEMP/FIL",35
6?0 FIELD #2,24 AS TNAMES,3 AS
TAREAS,8 AS TPHONES
630 FOR 1=1 TO LOF(1)
61.~0 GET #1, I
6"··,(1.1 CL.S
6l,(ZI PFHNT @ 68, "RECORD #"; I
670 PRINT@ 100, "NAME:";NAMES
600 PRINT@ 132, "AREA CODE:";AREAS
690 PRINT@ 164, "PHONE NUMBER:";
PHONES
7~0 PRINT@ 228, "DELETE THIS
RECORD? (Y /N)"
71~1 ANS == IM\EY$
720 IF AN$= "Y" THEN 800
730 IF ANS= "N" THEN 750
7 '+i1 GOTO 71 L1

-----------------------------APPENDIX C

750 LSET TNAME$ = NAME$
760 LSET TAREA$ = AREA$
770 LSET TPHONE$ = PHONE$
780 J=J+1
790 PUT #2,J
800 NEXT I
81.0 CLOSE
820 KILL "NAMES/NOS"
830 RENAME "TEMP/FIL" TO "NAMES/NOS"
840 RETURN
8~)0 END

SAMPLE PROGRAM #6
GRADING TESTS

This program is ideal for teachers. It creates several
disk files of students and their test score. You can then
immediately find averages and standard deviation for
the entire class or for each individual student.

10 • Test Pro9ram
20'
30 • The obJect of this Pro9ram
is to inPut several
40 • files--a names file and several
test files.
50' The files can then be accessed
as desired and the
60' test scores Processed to find
avera9es and standard
70 • devia.tic,ns.. The files a.r·e a.11
sequential access files.
80'
90'
100 • Ma.in module of Pro9ra.m
110 '
120 DIM NAME$(30),GRADE<6,30)
130 CLS
140 PRINT@ 107,"SELECTIONS"
160 PRINT@ 164,"1) CREATE A
'NAMES' FILE"
170 PRINT@ 196,"2) ADD A NEW
TEST FILE"
180 PRINT@ 228,"3) PROCESS SCORES"
190 PRINT@ 260,"4) END"
210 PRINT@ 331, "1,2,3 OR 4"
220 AN$=INKEY$
230 IF AN$="" THEN 220
240 ON VAL(AN$) GOSUB 290,430,
640,1430
250 GOTO 130
260'
270 • This subroutine builds a.
II NAMES n f i l e •
280'

290 OPEN "0",#1,•NAME/FIL"
300 CLS
310 PRINT@ 96,"ENTER NAME OF
STUDENT:"
320 LINE INPUT NAME$
330 WRITE #1,NAME$
340 PRINT@ 196,"(PRESS <ENTER> TO
ENTER":PRINT@ 228,•ANOTHER NAME,
PRESS <G>":PRINT@ 260,"TO QUIT>•
350 AN$=INKEY$
360 IF AN$="" THEN 350
370 IF AN$<)•Q• THEN 300
380 CLOSE #1
390 RETURN
400'
410 • This subroutine builds test
files.
420'
430 CLS
440 PRINT al 64
450 INPUT "NUMBER OF NEW TEST
FILE";TF$
460 IF TF$ = HH THEN 450
470 TF$ ="TEST"+ TF$
480 OPEN •I",#1, 0 NAME/FIL"
490 OPEN "0°,#2,TF$
500 IF EOF(l) THEN 560
510 INPUT #1,NAME$
520 PRINT "NAME:";NAME$

530 INPUT "SCORE";SCORE
540 WRITE #2,SCORE
550 GOTO 500
560 CLOSE #1,#2
570 RETURN
580'
590 • This subroutine iriPuts the
"NAMES 0 file and the
600 • desired test files and then
Processes them either
610 • on a. class basis or an
individual basis, and
620 • then Prints out the results.
630 s

640 OPEN "I",#1,"NAME/FIL"
650 IF EOF<1> = -1 THEN 690
660 Y = Y + 1
670 INPUT #1,NAME$(Y>
680 GOTO 650
690 VEND= Y
700 CLOSE #1
710 CLS
720 PRINT al 96
730 INPUT" HOW MANY TESTS ARE
THERE";N

73

APPENDIX C--------------------------
740 FOR X=1 TON
750 TF$ ="TEST"+ RIGHT$(STR$(X),1)
760 OPEN "I",#1,TF$
770 FOR V=1 TO VEND
780 INPUT #1,GRADE<X,V>
790 NEXT V
800 CLOSE #1
810 NEXT X
820 CLS
830 PRINT@ 130,"INDIVIDUAL TOTALS
OR CLASS"
840 INPUT" TOTALS(I/C)";AN$
850 IF AN$= "I" THEN 900
860 IF AN$= "C" THEN 1130
870'
880' This Portion Processes the
scores bv the student.
890'
900 FOR V=1 TO VEND
910 CLS
920 PRINT@ 105,NAME$(V)
930 PRINT@ 137,"SCORES:"
940 STUTOT = 0
950 FOR X=1 TON
960 PRINT TAB(10) GRADE<X,V>
970 STUTOT = STUTOT + GRADE<X,V>
980 NEXT X
990 AVE<V> = STUTOT / N
1000 NUM = 0
1010 FOR X=1 TON
1020 NUM = <AVE<V> - GRADE<X,V>>~2
+ NUM
1030 NEXT X
1040 SD= SQR<NUM / N>
1050 PRINT USING"% %##.##";
"AVERAGE:";AVE<V>
1060 PRINT USING"%
##.##";"STANDARD DEVIATION:";SD
1070 PRINT "PRESS <ENTER> TO SEE
NEXT NAME"
1080 AN$= INKEV$
1090 IF AN$= CHR$(13) THEN 1100
ELSE 1080
1100 NEXT Y
1110 CLS
1120 PRINT@ 105,"NO MORE NAMES"
1130 GOTO 1350
1140'
1150' This Portion Processes the
scores bv the test number
1160' for the whole class.
1170'
1180 INPUT" WHICH TEST NUMBER";X
1190 CLS
1200 PRINT@ 4,"DATA FOR TEST

74

%

NUMBER ";X
1210 PRINT" NAME";TAB<25)"SCORE"
1220 TTOT = 0
1230 FOR V=1 TO VEND
1240 TTOT = TTOT + GRADE<X,V>
1250 PRINT TABC1) NAME$(V);TAB(25)
GRADE<X,V>
1260 NEXT V
1270 AVE= TTOT / VEND
1280 NUM = 0
1290 FOR V=1 TO VEND
1300 NUM = NUM + (AVE - GRADE<X,V))t2
1310 NEXT V
1320 SD= SQR(NUM / <VEND - 1))
1330 PRINT:PRINT USING
"% %#%%##.##";
"AVERAGE FOR TEST #";X;":";AVE
1340 PRINT USING"%
##.##";"STANDARD DEVIATION: ";SD
1350 PRINT:PRINT" PRESS <ENTER>
FOR MORE"
1360 PRINT"
TO <~UIT"

PROCESSING, <Q>

1370 AN$= INKEV$
1380 IF AN$= CHR$(13> THEN 820
1390 IF AN$= "Q" THEN 1400
ELSE 1370
1400 RETURN
1410'
1420' This subroutine terminates
the Pr·,:•9r·am.
1430'
1440 END

SAMPLE PROGRAM #7
CREATE-A-GAME

These four programs will display 3 scenes - a house
and two rooms. Each scene is stored on disk as a pro
gram file.

10' "DISPLAY/BAS"
:20 '
30' The obJect of this Pro9ram
is to show you how YOU can
40' access another Pro9ram from
your main Pro9ram. It uses
50' a main pro9ram called
"DISPLAY/BAS" and three 9raPhics
60 • Pro9rams called "HOUSE/BAS",
"FOYER/BAS", and "STAIRS/BAS".
7C1' (Na.tur·allY theY mu'.:.t be on
disk before YOU can run this

--------------------------APPENDIXC

80 , Pr·o9r·am.)
912) ,
112)0 ,
1112) CLS
1212) PRINT@ 106, "SELECTIONS:"
1312) PRINT@ 1712), "1) HOUSE"
1412) PRINT@ 202, "2) FOYER"
1512) PRINT@ 234, "3) STAIRS"
160 PRINT@ 266, "4) END JOB"
1712) PRINT@ 3312), "1,2,3, OR 4"
1 B0 AN$ = I N•\EY$
1912) IF AN$="" THEN 1812)
2012) IF AN$= "4" THEN 2512)
2112) CLS
220 PRINT@ 98,"TO RETURN FROM
THIS SELECTION
230 PRINT@ 130,"PRESS ANY KEY"
240 FOR I=1 T9 40:NEXT I
250 ON VAL(AN$) GOTO 260,270,280,2912)
260 LOAD "HOUSE/BAS",R
270 LOAD "FOYER/BAS",R
280 LOAD "STAIRS/BAS",R
290 END

lt~' "HOUSE/BAS"
20
3,1 PMODE 3, 1
'+0 PCLS
50 SCREEN 1,0
60 DRAW "8M66,108;D48;RJ2;U48;L32"
70 DRAW "8M66,68;R132;BM46,96;R132;
8M50,156;R128"
80 DRAW "BM50,96;D60;8M178,96;D60;
8M206,88;D50"
9~ DRAW "8M0,136;RS0;BM206,136;RS0"
100 LINE (46,96)-(66,68),PSET
110 LINE (178,96)-(198,68),PSET
120 LINE (198,68)-(206,88),PSET
1~0 LINE (174,156)-(206,136),PSET
140 CIRCLE (92,130),5,0
150 PAINT <0,0),3,4
160 PAINT (0,149),1,4
170 PAINT (67,70),4,4
180 PAINT (55,105),2,4
190 PAINT (194,96),2,4
200 PAINT (82,128),3,4
210 AN$ = IN•\EY$
220 IF AN$="" THEN 210
230 LOAD "DISPLAY/BAS",R

H7t , II FOYER/BAS"
20'
30 PCLS

40 PMODE 3,1
50 SCREEN 1,0
60 DRAW "BM104,60;D92;R48;U92;L48•
70 DRAW "BM44,20;R168;D132;L132;
BL4;L12;BL4;L16;BM44,102;U82"
80 DRAW "BM220,60;D100;
BM244,58;D126"
90 DRAW "BM42,102;DJ8;R8;UJ8;L8"
100 DRAW "BM16,148;D40;R4;U40"
110 DRAW "BM64,148;D40;L4;U40"
120 DRAW "BM80,124;D40;L4;U36"
130 CIRCLE (144,108),4
140 CIRCLE (238,117),4
150 CIRCLE (45,140),15,4,.3,0,.7
160 CIRCLE (45,140),15,4,.3,.95,1
170 CIRCLE (53,136),4
180 LINE (0,192)-(16,176);PSET
190 LINE (20,172)-(44,152),PSET
200 LINE (256,192)-(212,152>,PSET
210 PAINT (28,8>,3,4
220 LINE (0,0)-(44,20),PSET
230 LINE (256,0)-(212,20),PSET
240 LINE (220,60)-(244,59),PSET
250 LINE (16,148)-(44,124),PSET
260 LINE (16,148)-(64,148),PSET
270 LINE (64,148)-(80,124>,PSET
280 LINE (80,124)-(52,124),PSET
290 PAINT (10,10),3,4
300 PAINT (60,32),3,4
310 PAINT (240,20>,3,4
320 PAINT (128,64),2,4
330 PAINT (228,70),2,4
340 PAINT (62,156),4,4
350 PAINT (78,150),4,4
360 PAINT (18,156),4,4
370 PAINT (68,128),1,4
380 PAINT (128,156),2,4
390 PAINT (40,140),4,4
400 PAINT (48,120),2,4
410 CIRCLE (46,98),5,2,2
420 AN$= INKEY$
430 IF AN$="" THEN 420
440 LOAD "DISPLAY/BAS",R

10, "STAIRS/BAS"
20'
30 PCLS
40 PMODE 3,1
~,0 SCREEN 1, 0
60 DRAW "BM60,212l;R140;D1212l;L40;UJ2;
L4;D52;R4;U20;8M1612l,160;L128;U1512l"
70 DRAW "BM4,62;D130;BM28,166;U102;
BM144, 148; Rl.2"
80 DRAW "BM40,72;D24;R36;U24;L36;

75

APPENDIX C-------------------------

BM44,76;D16;R2B;U16;L28"
90 LINE (32,12)-(92,12),PSET
11210 LINE (92,12)-(100,20),PSET
110 LINE <0,0)-(60,20),PSET
120 LINE (200,20)-(255,0>,PSET
130 LINE (200,140)-(255,192),PSET
140 LINE (0,192)-(32,160),PSET
150 LINE (4,62)-(28,64>,PSET
160 PAINT (120,4),2,4
170 PAINT (20,20),2,4
180 PAINT (230,20>,2,4
190 PAINT (120,40),2,4
200 PAINT (60,16),3,4
210 PAINT (20,64),3,4
220 PAINT (158,124),4,4
230 PAINT (42,74),4,4
240 LINE (28,8)-(144,148),PSET
250 LINE (64,12)-(156,122),PSET
260 LINE (68,12)-(156,116>,PSET
270 DRAW "BM144,148;U38"
280 FOR I=0 TO 9
290 DRAW "BM-8,28;U38"
300 NEXT I
310 DRAW "BM56,40;U28;BM48,31;U18;
BM40,22;U10"
320 PAINT (56,84),2,4
330 CIRCLE(56,86),10,3,.4,0,.5
340 LINE (51,86)-(63,86),PSET
350 DRAW "BM56,84;L4;E7;D8"
360 FOR I=l TO 32
370 CIRCLE (120,176),!*2,I/4,.25
3B0 NEXT I
382 DRAW "BM232,176;U100;R2;D100"
383 CIRCLE (232,180),15,4,1,.5,0
384 CIRCLE (232,178),6,4,2,.55,.1
385 CIRCLE (232,80),15,4,1,0,.5
386 CIRCLE (232,82>,6,4,2,.1,.55
390 AN$ = I M~EY$
400 IF AN$="" THEN 390
410 LOAD "DISPLAY/BAS",R

SAMPLE PROGRAM #8
BUDGETING

This organizes your finances and prints out a journal on
your printer. You need a line printer with a line length
of at least 80 characters to run it.

10' Budget Program
20'
30' The obJect of this Program
is to build three direct access
40 ' file~., one a 1 isting of a .
balanced budget, another, a listing

76

50' of transactions, and the
third, a listing of the updated
60' budget. The Program allows
for carrvover from the Previous
70' Per·iod'~. b•Jdget. A ._iour·nal
can be Printed out giving a list
80' of the budget,exPenses, and
balances. (NOTE: As written,
90' this Program requires a Printer
for outputting the Journal.
100' However, with slight modifi
cation, it could be used without
1 :1.0 ' a Pr·inter·.)
120'
130'
140' Main module of Program
1512)'
160 CLS
170 PRINT@ 106, "SELECTIONS:"
180 PRINT@ 165,"1> BUILD BUDGET"
190 PRINT@ 197,"2) UPDATE AN
ACCOUNT"
200 PRINT@ 229,"3) PRINT OUT A
,JOURNAL"
210 PRINT@ 261,"4) END JOB"
220 PRINT@ 329, "1,2,3, OR 4?"
230 AN$= I N•~EY$
240 IF AN$="" THEN 230
250 ON VAL(AN$) GOSUB 360,950,
1450,19712)
260 GOTO 160
2712)'
280' This subroutine builds the
budget file (called
290' BUDGET.ORG), and builds or
updates the file BUDGET.UPD
3012)' It allow~. You to inPut the
start date of the budget
310' and the total amount YO~
have to divide u~ to accounts.
320' Tentative amounts are entered
for each account and a
330' running balance is kePt to
advise You of the amount
3L~0 ' left in Your· total bud9et.
3512)'
360 OPEN "D",#1,"BUDGET/ORG",5
370 OPEN "D",#2,"BUDGET/UPD",5
380 FIELD #1,5 AS OAMT$
390 FIELD #2,5 AS UPDAMTS
400 GOSUB 1810
410 IF LOF(2) = 0 THEN 470
4~:.::0 FOR I= 1 TO 9
'+30 GET #2, I
440 AMT(I) = CVN<UPDAMTS)

---------------------------APPENDIX C

450 PTOT =PTOT + AMTCI)
460 NEXT I
470 CLS
480 PRINT@ 130,"DATECMM/DD/YY):"
490 PRINT@ 162,"PROJECTED INCOME
FROM: II

500 PRINT@ 196,"SALARY:"
510 PRINT@ 228,"0THER:"
520 PRINT@ 96
530 INPUT" DATECMM/DD/YY):";DATE$
540 PRINT@ 162, "PROJECTED INCOME
FROM: II

550 INPUT" SALARY:";SAL
560 INPUT" OTHER:";OTHER
570 BTOT =SAL+ OTHER
580 CLS
600 PRINT@ 9,"CURRENT BUDGET"
610 PRINT "A.CCT+t DESCRIPTION
BALANCE"
620 SUMBUD = 0
630 FOR 1=1 TO 9
640 PRINT USING"####%%
% %####.##-";ACNO(I);
SPACE$;DESC$(I);AMT(I)
650 SUMBUD = SUMBUD + AMT(I)
660 NEXT I
670 PRINT@ 86,USING "$####.##-"
; AMT (U
680 PRINT@ 419,USING
"% %$$###.##";
"REMAINING MONEY:";BTOT - (SUMBUD
- PTOT)
690 PRINT@ 451, "ENTER ACCT# OF
ITEM TO BE"
700 INPUT"
G!UIT)"; AN

CHANGED (000 TO

710 IF AN= 0 THEN 790
720 CLS
730 N =AN/ 100
740 PRINT@ 105,ACNO(N)
7~0 PRINT@ 138,DESCS(N)
760 PRINT@ 170,"S";AMT(N)
770 PRINT:INPUT" NEW
AMOUNT";AMT(N)
7m1 GO TO 580
790 DATE= VAL(LEFTS(DATE$,2) -~
MIDS(DATES,4,2) + RIGHTS(DATES,2))
800 LSET OAMT$ - MKN$(DATE)
Ell 0 PUT # l , 1
820 FOR I=1 TO 9
EUC.1 LSET OAMT$ = M~-<NS (AMT< I))
840 LSET UPDAMT$ = MKNS(AMT(I))
8~:iv., PUT #1, I+l
860 PUT #2,I
ff/0 NEXT I

880 CLOSE
890 RETURN
900 '
910' This subroutine builds a
tr-ansaction file called TFILE.DAT
920' which contains anv updates
to the bud9et, and updates the
930' file BUDGET.UPD.
940'
950 OPEN "D",#1,"BUDGET/UPD",5
960 OPEN "D",#2,"TFILE/DAT•,36
970 FIELD #1,5 AS UPDAMT$
980 FIELD #2,3 AS ACN0$,8 AS DATE$,
20 AS DESC$,5 AS TAMT$
990 FOR I=l TO 9

1000 GET #1,I
1010 AMT<I> = CVNCUPDAMT$}
1020 NEXT I
1030 GOSUB 1810
1040 CLS
1050 SUMBUD = 0
1060 PRINT@ 9,"CURRENT BUDGET"
1070 PRINT "ACCT# DESCRIPTION
BALANCE"
1080 FOR 1=1 TO 9
1090 PRINT USING"####%%
0 %####.##-";ACNOCI);
SPACES$;DESC$(l};AMT(I}
1100 SUMBUD = SUMBUD + AMT(I}
1110 NEXT I
1120 PRINT@ 86,USING
"S####.##-";AMT(l}
1130 PRINT@ 419,USING "% %
$$###.##";"TOTAL BALANCE:";SUMBUD
1140 PRINT@ 451,"ENTER ACCT# OF
ITEM TO BE
ll.50 INPUT" UPDATED (000 TO QUIT}";AN
1160 IF AN= 0 THEN 1350
1170 CLS
1180 N =AN/ 100
1190 PRINT@ 95,AN
1200 PRINT DESC$CN}
1210 PRINT USING"% %
$$###.##";"CURRENT BALANCE";AMTCN>
1220 PRINT:INPUT "DATE(MM/DD/YY}";DT$
1230 PRINT "DESCRIPTION OF
TRANSACTION:"
121+0 INPUT OS$
1250 PRINT "AMOUNT OF TRANSACTION:"
1260 PRINT "(NEGATIVE NUMBER FOR A
CREDIT)"
1270 INPUT TRANS
1280 AMT(N) = AMT<N> - TRANS
1290 LSET ACNO$ = RIGHTS<STRS(AN),3}

77

APPENDIX c _________________________ _

1300 LSET DATE$= DT$
1310 LSET DESC$ = DSS
1320 LSET TAMT$ = MKN$(TRANS)
1330 PUT #2,LOF<2)+1
1::iA0 GOTO 1040
1350 FOR I=1 TO 9
1360 LSET UPDAMT$ = MKN$(AMT<I>>
1370 PUT #1,I
1380 NEXT I
1390 CLOSE
11+00 RETURN
1410'
1420' This subroutine Prints out
a Journal listing the
1430' bud9et,transactions,and
ba 1 ance:: ..
1 L~40 '
1450 OPEN "D",#1,"BUDGET/ORG",5
1460 FIELD #1,5 AS AMT$
1470 OPEN "D",#2,"TFILE/DAT",36
1480 FIELD #2,3 AS TACNOS,8 AS
TDATES,20 AS TRDESC$,5 AS TMTS
1490 GOSUB 1810
1500 CL.S
1510 PRINT@ 172,"PRINTING"
15 20 Gt~ t # 1 , I
1530 DATES= STRS<CVN(AMTS))
1540 IF LEN(DATE$) < 6 THEN DATES
= " " + DATE$
1550 DATES= LEFT$(DATES,2) +
"/" + MIDS(DATES,3,2) + "/" +
RIGHT$(DATE$,2)
1560 PRINT #-2,TAB(3~)"BUDGET FOR
THE PERIOD"
1570 PRINT #-2,TABC31)
"STARTING ";DATES
1580 PRINT #-2:PRINT #-2
1590 PRINT #-2,TAB<28)"ACCOUNT OR"
1600 PRINT #-2,TAB(10)
"ACCOUNT";TAB(27)"TRANSACTION"
1610 PRINT #-2,TAB(10)"NUMBER";
TA8(14)"DATE";TA8(27)"DESCRIPTION";
TA8(47)"TRANSACTION";TAB(61)
"BALANCE"

78

1620 FOR I=2 TO LOFC1)
1630 GET #1,I
1640 PRINT # .. -2
1650 ~RINT #-2,TAB(12)ACNO(I-1);
TAB(17)DATES;TAB(27)DESC$(1-1);
TA8(61)CVNCAMT$)
1660 BAL=CVN(AMTS)
1670 FOR J=1 TO LOF(2)
1680 GET #2,J
1690 IF ACNOCI-1) <> VAL(TACN0$)
THEN 1730
1700 BAL=BAL - CVN(TMT$)
1710 IF CVN(TMT$) <.0 THEN CR$="CR"
EL.SE CR$=""
1720 PRINT #-2,TA8(17)TDATE$;TA8(27)
TRDESCS;TABC47)ABS(CVN<TMT$));~R,
;TAB(61)BAL
1730 NEXT J
1740 NEXT I
1750 CLOSE
1760 RETURN
1 T/0 '
1780' This subroutine sets the
values of the account numbers,
1790' ACNO(I), and account
descriPtions,DESCSCI).
1800'
1810 FOR I=1 TO 9
1820 ACNO(I) =I* 100
18:":50 NEXT I
1840 DESC$(1) = "FOOD"
1850 DESC$(2) ='RENT"
1B60 DESCS(3) =
1870 DESCS(4) =
lD80 DESC$(5) =
1890 DESCS(6) =

CAR"
UTILITIES"
INSURANCE"
TAXES"

1900 DESC$(7) - CLOTHING"
1910 DESCS(8) = ENTERTAINMENT"
1920 DESCS(9) = MISCELLANEOUS"
1930 RETURN
1940'
1950' This subroutine terminates
the Pr· o9 r·am.
l. 960 '
1970 END

----------------------------APPENDIX D

ASCII CHARACTER CODES

These are the ASCII codes for each of the characters on your keyboard. The first column is the character; the second
is the code in decimal notation; and t he third converts the code to a hexadecimal <16-based number).

Chapter 15 shows how to use these codes wi th CHR$ to produce a character.

CHARACTER

SPACEBAR

DECIMAL
CODE

64

HEXADECIMA
CODE

40

DECIMAL
CODE

HEXADECIMA
CODE

*If shifted, the codes for these characters are as follows: (CLEAR) is 92 (hex 5C); ~ is 95 (hex 5F); ~ is 91 (hex 5BJ;
(]) is 21 (hex 15); and (I) is 93 (hex 5D).

79

APPENDIX 0---------------------------

LOWER-CASE CODES

These are the ASCII codes for lower-case letters. You can produce these characters by pressing the CIHlli) and
(i) keys simultaneously to get into an upper/lower case mode. The lower case letters will appear on your screen in
reversed colors (green with a black background).

m

80

DECIMAL
CODE

HEXADECIMA
CODE

61

CHARACTER DECIMAL
CODE

HEXADECIMA
CODE

____ ______________________ APPENDIX E

MEMORYMAP
DECIMAL HEX CONTENTS DESCRIPTION

0-255 OOOO-OOFF System Direct See Section IV of Getting Started with COWR
PueRAM BASIC for detailed information.

256-1023 0100-0SFF Extended Pan RAM
1024-1535 0400-05FF Video Text Memory
1536-2440 0600-0988 Additional System This is used exclusively by DISK BASIC.

RAM
' 2441-top 0989-top of RAM These Random Access Memory locations are allocated dynamically and
ofRAM contain the following:
topofRAMis topofRAMis 1. Random File Buffer 'lbtal buffer space for random access files. 256
16383 for 16K 3FFFfor16K Area byt.es are reserved for this on start-up. This value
systems;
32767for

syat.em.s; 7FFF
for 32K syst.ems

can be reset by the FILES statement.

32Kayatems
2. File Control Blocks Control data on each user buffer. 843 bytes are

II (FCBs) reserved for this on start-up. This value can be
II reset by the FILES statement: (number of buffers

set bv FILES + 1) x 281 bvtee.
Ii 3. Graphics Video Space reserved for graphics video pages. 6144

Memory bytes or 4 pages are reserved for this on start-up.
I~ This value can be reset by the PCLEAR
11

statement: number of pages reserved by PCLEAR
X 1,536 bytes per page. (Note: All pages must
start at a 256-byte page boundary-i.e., a
memory location divisible by 256.) ,

4. BASIC Program Space reserved for BASIC Programs and
I,

Storage Variables. 6455* byt.es (16K systems) or 22,83S-
5. BASIC Variable bytes (32K systems) are reserved for this on start-

II Storage up. This value can be reset by different settings of

6. Stack
Random File Buffers, FCBs, Graphics Video
Memory, Strirur Soace or User Memorv.

' 7. String Space Total space for string data. On start-up, 200 bytes
are reserved, but this can be reset by the CLEAR
statement.

I

8. User Memory Total space for user machine-language routines.
1-. No space is reserved for this on start-up, but this

can be reset by the CLEAR statement.
32768-40959 8000-9FFF Extended COLOR

BASIC ROM
Read Only Memory

40960-49151 A000-BFFF COLOR BASIC ROM Read Only Memory
49152-57343 C000-DFFF COLOR DISK BASIC Read Only Memory

ROM
57344-65279 EOOO-FEFF Unused
65280-65535 FFOO-FFFF Input/Outout

*If you execute a PRINT MEM command, on start-up, you will get a number a little lower than this because of the
overhead necessary to execute this command.

81

APPENDIX F_,_. ________________________ _

82

SPECIFICATIONS

Type of disks

Disk Organization
(Formatted disk)

Operating Temperature

Memory Capacity
Unformatted

Soft sector
(1/0 sector/track)

Data transmission speed

Access Time
Track to track
Average
Settling time

Number of indexes

Weight of Disk Drive

Disk Controller

5¼" mini-diskettes
Radio Shack Catalog

Number 26-305
26-405 (package of three)
or 26-406 (package of 10)

Single-sided
Double-density
35 tracks
18 sectors per track
256 data bytes per sector
Directory on track 17

18 to 113 degrees Fahrenheit
10 to 45 degrees Centigrade

218.8 kilobytes per disk
6.2 kilobytes per track
179.1 kilobytes per disk
5.1 kilobytes per track

250 kilobits per second

5 m sec.
100 m sec.
15 m sec.

1

3.8 kg.

WD1793

ERROR MESSAGES

/0 Division by zero. The Computer was asked to DS Direct Statement. There is a direct statement in
divide a number by 0, which is impossible. You the data file. This could be caused if you load a
could also get this error message if you do not program with no line numbers.
enclose a filename in quotation marks.

ER Write or Input past End of Record (direct access
AE File Already Exists. You are trying to RENAME only). You are attempting to PUT more data in the

or COPY a file to a filename which Already record than it can hold or INPUT more data than
Exists. it contains.

AO Attempt to open a data file which is Already FC Illegal Function Call. This happens when you use
Open. a parameter (number) with a BASIC word that is

out of range. For example SOUND (260,260) or
BR Bad Record Number. You have used an impossible CLS(lO) will cause this error. Also RIGHT$(S$,20),

record number in your PUT or GET line. Either it when there are only 10 characters in S$, would
is too low (less than 1) or too high (higher than the cause it. Other examples are a negative subscript,
maximum number of records the Computer can fit such as A(-1), or a USR call before the address
on the disk). Use a different record number in the has been POKEd in.
PUT or GET line, or assign a smaller record
length in the OPEN line. FD Bad File Data. This error occurs when you PRINT

data to a file, or INPUT data from the file, using
BS Bad Subscript. The subscripts in an array are out the wrong type of variable for the corresponding

of range. Use DIM to dimension the array. For data. For example, INPUT# 1, A, when the data
example, if you have A(12) in your program, with- in the file is a string, causes this error.
out a preceding DIM line which dimensions array
A for 12 or more elements, you will get this error. FM Bad File Mode. You have specified the wrong file

mode ("O;' "I;' or "D") in your OPEN line for what
CN Can't continue. If you use the command CONT you are attempting to do. For example, you are

and you are at the END of the program, you will attempting to GET a record from a file OPENed
get this error. for "I" (use "D") or WRITE data to a file OPENed

for "I" (use "O").
DD Attempt to redimension an array. An array can

only be dimensioned once. For example, you can- FN Bad File Name. You used an unacceptable format
not have DIM A(12) and DIM A(50) in the same to name your file.
program.

FO Field Overflow. The field length is longer than the
DF Disk Full. The Disk you are trying to store your record length.

file on is Full. Use another disk.
FS Bad File Structure. There is something wrong

DN This is either a Drive Number or Device Number with your disk file. Either the data was written
error. incorrectly or the directory track on the disk is

Drive Number Error. You are using a drive num- bad. See IO for instructions on what to do.

her higher than 3. You will also get this error if ID Illegal Direct statement. You can only use INPUT you do not specify a drive number when using
as a line in the program, not as a command line.

DSKINI or BACKUP. If you have only one drive
specify drive O with these two commands IE Input past End of file. Use EOF or LOF to check (DSKINIO or BACKUP 0).

to see when you've reached the end of the file.
Device Number error. You are using more buffers When you have, CLOSE it.
than the Computer has reserved. Use FILES to
reserve more. You might also get this error if you IO Input/Output error. The Computer is having trou-
use a nonexisting buffer number (such as buffer ble inputting or outputting information to the
- 3) or omit the buffer (such as FIELD 1 AS A$ disk.
rather than FIELD #1, 1 AS A$).

83

APPENDIX G--------------------------

(1) Make sure there is a disk inserted properly
in the indicated drive and the drive door is
closed.

(2) If you still get this error, there might be
something wrong with your disk. Try rein
serting the disk first. Then try using a dif
ferent one or reformatting it. (Remember
that reformatting a disk erases its contents.)

(3) If you still get this error, you probably have
a problem with the Computer System itself.
Call the Radio Shack Repair Center.

This error could also be caused by input/output
problems with another device, such as the tape
recorder.

LS String too Long. A string may only be 255
characters.

NE The Computer can't find the disk file you want.
Check the disk's directory to see if the file is there.
If you have more than one disk drive, you might
not have included the appropriate drive number
in the filename. If you are using COPY, KILL, or
RENAME (discussed in the next chapter), you
might have left off the extension.

NF NEXT without FOR. NEXT is being used without
a matching FOR statement. This error also occurs
when you have the NEXT lines reversed in a
nested loop.

NO File Not Open. You cannot input or output data to
a file until you have OPENed it.

OB Out of Buffer space. Use FILES to reserve more
space.

OD Out of Data. A READ was executed with insuffi
cient DATA for it to READ. A DATA statement
may have been left out of the program.

OM Out of Memory. All available memory has been
used or reserved.

84

OS Out of String Space. There is not enough space in
memory to do your string operations. Use CLEAR
at the beginning of your program to reserve more
string space.

OV Overflow. The number is too large for the Com
puter to handle.

RG RETURN without GOSUB. A RETURN line is in
your program with no matching GOSUB.

SE Set to non-fielded string: The field in which you
are attempting to LSET or RSET data in has not
yet been FIELDed. Check the FIELD line.

SN Syntax error. This could result from a misspelled
command, incorrect punctuation, open parenthe
sis, or an illegal character. Type the program line
or command over.

ST String formula too complex. A string operation
was too complex to handle. Break up the operation
into shorter steps.

TM Type Mismatch. This occurs when you try to
assign numeric data to a string variable (A$= 3)
or string data to a numeric variable (A =
"DATA"). This could also occur if you do not
enclose a filename in quotes.

UL Undefined Line. You have a GOTO, GOSUB, or
other branching line in the program asking the
Computer to go to a nonexisting line number.

VF Verification. You will only get the error when you
have the VERIFY command ON and are writing
to a disk. The Computer is informing you that
there is a flaw in what it wrote. See IO for instruc
tions on what to do.

WP Write Protected. You are trying to store informa
tion on a disk which is Write Protected. Either
take the label off the write protect notch or use a
different disk. If your disk is not Write Protected,
then there is an input/output problem. See IO for
instructions on what to do about this.

___________________________ APPENDIX H

DISK BASIC SUMMARY

This is a short summary on each new DISK BASIC "command:' You may also use any of the EXTENDED COLOR
BASIC commands. (See Getting Started with Extended Color BASIC or the Color Computer Quick Reference Card
for a complete listing.)

The first line gives the format to use in typing the command. The italicized words represent "parameters"-values
which you can specify with the command.

This is the meaning of some of the parameters you may specify:

filename
All information stored on a disk must have a filename. The filename should be in this format:

name/extension:drive number
The name is mandatory. It must have 1 to 8 characters.
The extension is optional. It can have 1 to 3 characters.
The drive number is optional. If you do not use it when opening a disk file, the Computer will use drive O (or
the drive specified in the DRIVE command).

number
This may be a number (1, 5.3), a numeric variable (A, BL), a numeric function (ABS(3)), or a numeric operation
(5+3, A-7).

string
This may be characters ("B;' "STRING"), a string variable (A$, BL$), a string function (LEFT$(S$, 5)), or a string
operation ("M" + A$). ·

data
This may be number or string.

BASIC WORD

BACKUP source drive TO destination drive
Duplicates the contents of the source drive to the destination drive. If you only
have one drive, specify it as the source drive. The Computer will prompt you to
switch disks as it makes the backup copy. Executing this command will erase
memory.

BACKUP 121 TO 1 BACKUP 121

CLOSE # buffer, ...
Closes communication to the buffers specified. (See OPEN for buffer numbers).
If you omit the buffer, the Computer will close all open files.

CLOSE 111 CLOSE 111 , 112

COPY filenamel TO filename2
Copies the contents of filenamel to filename2. Each filename must include an
extension. (See format for filenames above.) Executing this command will erase
memory.

COPY "FILE/BAS" TO "NEWFILE/BAS"
COPY "ORG/DAT:121" TO "ORG/DAT:1"

PAGES
DISCUSSED

13-15

26-27

21

85

APPENDIX H---------------------------

BASIC WORD

CVN(string variable)
Converts a 5-byte coded string (created by MKN$) back to the number it
represents.

X=CVN(A$)

DIRdrive number
Displays a directory of the disk in the drive number you specify. If you omit the
drive number, the Computer will use drive 0. (Unless you use the DRIVE com
mand to change this default.) This is a typical directory display:

MYPROG BAS 0 5 3
YOURPROG BAS 0 A 1
HERDATA DATA 1 A 5
USRPROG BIN 2 5 2

The first column is the name of the file. The second column is its extension. The
third is the file type (0 = BASIC program, 1 = BASIC data file, 2 = machine lan
guage file, 3 = editor source file). The fourth column is the storage format
(A= ASCII, B = Binary). The fifth column is the file length in granules.

DIR0 DIR

PAGES
DISCUSSED

50

11

DRIVE drive number 11-15
Changes the drive default to the drive number you specify. If you do not use the
DRIVE command, the Computer will default to drive 0.

DRIVE 1

DSKINidrive number 8
Formats a disk in the drive number you specify. Executing this command will
erase memory.

DSKINI0 DSKINI1

DSKI$ drive number, track, sector, string variablel, string variable2
Inputs data from a certain sector within a certain track on the disk in drive
number. The first 128 bytes of data are input into string variable]; the second
128 bytes into string variable2.

OSK l$ 0, 12 , 3, M$, N$

DSKO$ drive.._number, track, sector, stringl, string2
Outputs string'data into the sector, track, and drive number you specify. string 1
is output into the first 128 bytes of the sector; string2 is output into the second
128 bytes. Used improperly, this command could garble the contents of the disk.

DSKO$ 0, 2, 1, "FIRST DATA", "SECOND DATA"

EOF (buffer)
Returns a O if there is more data to be read in the buffer and a -1 ifthere is no
more data in it. (See OPEN for buffer numbers.)

IF EOF(l) = -1 THEN CLOSE #1

FIELD# buffer, field size AS field name, ...
Organizes the space within a direct access buffer into fields. (See OPEN for
buffer numbers.) You specify the size and name of each field.

FI ELD # 1 , 10 AS A$, 12 AS 5$, 5 AS C$

86

61-62

61-62

27

48-49

---------------------------APPENDIX H

BASIC WORD

FILES buffer number, buffer size
Tells the Computer how many buffers to reserve in memory (buffer number),
and the total bytes to reserve for these buffers (buffer size). If you do not use
FILES, the Computer will reserve enough memory space for buffers 1 and 2,
and will reserve a total of 256 bytes for those buffers.

FILES 1, 1111011! FILES 5

FREE(drive number)
Returns the number of free granules on the disk in the drive number you
specify.

PRINT FREE(0l

GET # buffer, record number
Gets the next record or the record number you specify, and puts it in the buffer.
(See OPEN for buffer numbers).

GET • 1 , 5 GET •2, 3

INPUT# buffer, variable name, ...
Inputs data from the buffer you specify and assigns each data item in the buffer
to the variable name you specify. (See OPEN for buffer numbers.)

INPUT •1, A$, B$

KILL filename
Deletes the filename you specify from the disk directory. (See the format for file
names above.) You must include the extension with the filename.

KILL "FILE/BAS" "KILL FILE/DAT:1"

LINE INPUT # buffer, data
Inputs a line (all the data up to the (ENTER) character) from the buffer you specify.
(See OPEN for buffer numbers).

LINE INPUT •1, X$

LOAD filename, R
Loads the BASIC program file you specify from a disk into memory. By includ
ing R, the Computer will RUN the program immediately after loading it. If
your filename does not have an extension, the Computer assumes it is BAS. (See
the format for filenames above.) Executing this command will erase memory.

LOAD "PROGRAM" , R LOAD "ACCTS/ BAS: 1"

LOADM filename, offset address
Loads a machine-language program file from disk. You can specify an offset
address to add to the program's loading address. If your filename does not have
an extension, the Computer assumes it is BIN. (See the format for filenames
above.)

LOADM "PROG/BIN, 3522

LOC(buffer)
Returns the current record number of the buffer you specify. (See OPEN for
buffer numbers.)

PRINT LOC(1)

PAGES
DISCUSSED

54-55

20

34-36

26-28

20

42-43

9

61

87

APPENDIX H _________________________ _

BASIC WORD

LOF(buffer)
Returns the highest numbered record of the buffer you specify. (See OPEN for
buffer numbers.)

FOR R = 1 TO LOF(1l

LSET field name = data
Left justifies the data within the field name you specify. If the data is larger
than the field, the RIGHT characters will be truncated (chopped offi.

LSET A$= "BANANAS" LSET B$ = T$

MERGE filename, R
Loads a program file from disk and merges it with the existing program in
memory. If you include R, the Computer will immediately run the program
after merging it. (See the format for filenames above.) The disk program file
cannot be MERGEd unless it was SA VEd with the A (ASCII) option.

MERGE "SUB/BAS" MERGE "NEW", R

MKN$(number)
Converts a number to a 5-byte coded string, for storage in a formatted disk file.

LSET B$ = MKN$(53878910l

OPEN "mode;'# buffer, filename, record length
Opens a place in memory called a buffer which will communicate data to and
from a certain device. The buffers and the devices they communicate with are:

0-screen or printer (it is not necessary to open this buffer)
- 1-tape recorder
-2-printer
1-15-disk drive

The communication modes you can use are:
I- inputting data from a sequential access file
O-Outputting data to a sequential access file
D-Inputting or outputting data to a direct access file

The filename you use should be in the format defined above. If you do not give
filename an extension, the Computer will give it the extension DAT.
If you are opening communication to a direct access file, you can also specify
the record length. If you don't, the record length will be 256 bytes.

OPEN "D", #1, "FILE", 15
OPEN "I", #2 "CHGE/DAT"

PRINT # buffer, data list
PRINTs the data to the buffer. (See OPEN for buffer numbers.) You may use a
comma or a semi-colon to separate each item in the data list.

PRINT #1, "DATA"

PRINT # buffer, USING format; data list
Prints data to the buffer using the format you specify. The format is a string
which can either specify a numerical or string format.
numerical formats may consist of any of the following:

sets the field of a number
formats a decimal point

88

PAGES
DISCUSSED

37

48-50

53-54

50

26-28,
29-31,
33-38

27-28

45-46

---------------------------APPENDIX H

' **
$
$$
+

BASIC WORD

formats a comma every third number
fills leading spaces with asterisks
places $ ahead of number
floating dollar sign
in first position, causes sign to be printed before number; in last
position causes sign to be printed after the number
prints number in exponential notation
prints a.minus sign after negative numbers

PRINT USING •1, "••••" i 53, 76
PRINT USING •2, "**$#,##-"l -3,678

string formats may consist of either:
% % fields the length of a string.
! ! prints the first character of the string

PRINT USING •1, "!"i "WHITE"
PRINT USING •I, "X, X," i "YELLOW"

See Going Ahead With Extended Color BASIC for more information on the
formats.

PAGES
DISCUSSED

PUT # buffer, record number 34
Assigns a record number to the data in the buffer. If you do not specify a record
number, the Computer will assign it to the current record. (See OPEN for buffer
numbers.)

PUT •2, 3 PUT • I , a

RENAME old filename TO new filename
Renames a file on disk to a new filename. You must specify the extension of both
filenames.

RENAME "MFILE/DAT:1" TO "BFILE/DAT:1"

RSET field name = data
Right justifies the data within the field name you specify. If the data is larger
than the field, the RIGHT characters will be truncated (the same as with
LSET).

RSET M$ = "SOAP"

19-20

RUN filename, R 9
Loads filename from disk and runs it. IfR is included, all open files will remain
open. (See the format for filenames above.)

RUN "FILE' RUN "PROG/BAS", R

SAVE filename, A 8
Saves filename on disk. If you do not give filename an extension, the Computer
will give it the extension BAS. By using the A option, your program will be
saved in ASCII format. (See the format for filenames above.)

SAVE "PROG/BAS" SAVE "TEST: I" , A

SAVEM filename, first address, last address, execution address 61
Saves filename - a machine language program beginning at first address (in
memory) and ending at last address. You also specify the address in which it
will be executed. If you do not give filename an extension, the Computer will
give it the extension BIN. (See the format for filenames above.)

SAVEM "FILE/BIN:!", &H5200, &H5800, &H5300

89

APPENDIX HF-----------------------------

BASIC WORD

UNLOAD drive number
Closes any open files in the drive number you specify. If you don't specify a drive
number the Computer will use drive O (or the drive number you specified with
DRIVE).

UNLOAD 0 UNLOAD

VERIFY ON
VERIFY OFF
Turns the verify function ON or OFF. When VERIFY is ON, the Computer will
verify all disk writes.

WRITE # buffer, data list
Writes the data to the buffer you specify. (See OPEN for buffer numbers.) Use
a comma to separate each item in the data list.

WR I TE # 1 , A$, 5$, C

90

PAGES
DISCUSSED

13

15

25-26,
34-35

------------------------------INDEX

SUBJECT PAGES
ASCII 11, 54, 59, 78, 79

BACKUP 13, 14, 84
Binary 11 , 54
Bits ... 7, 57
Buffer 26, 29, 54, 55, 84
Bytes 7, 41, 57, 58, 59

CLOSE 26, 27, 34, 84
Connections 1, 2
COPY 21, 84
CRC .. 58
CVN 50, 85

DCB PT .. 60
DCDRV 60
DCODC 60
DC SEC 60
DCSTA .. 60
DCTRK 60
DECIMAL CODE 78, 79
Destination Disk . 14
Direct Access File 33-38, 47, 48
DIR .. 11, 85
Directory 11 , 25, 58
Directory Entries . 58
Direct Input . 48
Disk

Care of disk 13-17
Formatting 7-8
Inserting . 3

Disk Drive 2, 8
Disk System 1 , 57
Drive Number 11 , 85
DSKCON 60, 60
DSKINIO 8, 14, 85
DSKI$ 61, 62
DSKO$ 61, 62, 85

EOF 27, 45, 85
Error Messages 16, 82, 83

Field .. 86
FIELDED INPUT 49
File Allocation Table . 59
Fl~s 8, 25, 54,55, 58, 86
Filename 10, 59, 84
Filename Extension 59, 84
File number . 84
FORMAT 7, 8, 47
FREE ... 86

GET . 34, 35, 36, 86
Granule 58, 59

Hexadecimal 57

SUBJECT PAGES
INPUT 26, 27, 34, 36, 37, 42,

43,61,86
Interface . 2

KILL 20, 86

LINE INPUT42, 43, 86
LIST ... 9
LOAD 9,86
LOADM 61, 87
LOC .. 87
LOF 37, 87
Logical Sector 59, 60
LSET 48, 49, 50, 87

Machine-Language 57, 60, 61
Memory .. 9
MERGE 53, 54, 87
MKN$ 50, 87
Multi-Disk Drives . 20

NEW ... 9
Numerical Formats . 88

OPEN 26, 27, 34, 87
OUTPUT 26, 27, 61

Physical Sector 59, 60
PRINT 19, 27, 43, 44, 45, 48, 88
PRINT FREE 20
PRINT USING 45, 88
PUT . 34, 35, 36, 88

READ ... 54
Records 33, 34, 36, 37, 55
RENAME 19, 88
RESET .. 15
RMB .. 60
RSET , . 89
RUN .. 9, 89

Salvage a Disk . 15
SAVE 8, 19, 89
SAVEM 61, 89
Sector 7, 57, 58
Sequential Access File 29-31
SKIP FACTOR 59
Source Disk .. . 14
Specifications . 81
Start-up 2-3
Storing on Disk

A BASIC Program 8
A Data File . 23-39
A Machine-Language Program 61
Machine-Language Routine . 60

String ... 84
String Format 88
System Controls . 57

91

INDEX----------------------------

SUBJECT PAGES

Technical Information 57-62
Tracks 57, 58

UNLOAD 13, 89

VERIFYOFF 15, 89
VERIFYON 15, 89

WRITE 25, 34,35, 37,42,89
WRITE PROTECT 15

92

SERVICE POLICY
Radio Shack's nationwide network of service facilities provides quick, conve
nient, and reliable repair services for all of its computer products, in most
instances. Warranty service will be performed in accordance with Radio
Shack's Limited Warranty. Non-warranty service will be provided at reasonable
parts and labor costs.

Because of the sensitivity of computer equipment, and the problems which can
result from improper servicing, the following limitations also apply to the
services offered by Radio Shack:

1. If any of the warranty seals on any Radio Shack computer products are
broken, Radio Shack reserves the right to refuse to service the equipment or
to void any remaining warranty on the equipment.

2. If any Radio Shack computer equipment has been modified so that it is not
within manufacturer's specifications, including, but not limited to, the in
stallation of any non-Radio Shack parts, components, or replacement
boards, then Radio Shack reserves the right to refuse to service the equip
ment, void any remaining warranty, remove and replace any non-Radio
Shack part found in the equipment, and perform whatever modifications are
necessary to return the equipment to original factory manufacturer's speci
fications.

3. The cost for the labor and parts required to return the Radio Shack com
puter equipment to original manufacturer's specifications will be charged to
the customer in addition to the normal repair charge.

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A. CANADA
FORT WORTH, TEXAS 76102 BARRIE, ONTARIO, L4M4W5

- ------•-------

TANDY CORPORATION

AUSTRALIA BELGIUM
91 KURRAJONG ROAD

MOUNT DRU/TT, N.S.W. 2770
PARC INDUSTRIEL NANINNE

5140 NANINNE

UNITED KINGDOM
BILSTON ROAD, WEDNESBURY

WEST MIDLANDS WS10 7JN

8749470-BCo PRINTED IN U.S.A.

	Cover
	Table of Contents
	Chapter 1 - To Get Started
	Section I - The Disk
	Chapter 2 - Meet Your Disk
	Chapter 3 - A Garbled Up Disk
	Chapter 4 - You're the Boss

	Section II - The Disk Program
	Chapter 5 - One Thing at a Time
	Chapter 6 - Changing It All Around
	Chapter 7 - A More Direct Approach

	Section III - The Refined Disk Program
	Chapter 8 - How Much Can One Disk Hold
	Chapter 9 - Trimming the Fat Out of Direct Access
	Chapter 10 - Shuffling Disk Files
	Chapter 11 - Technical Information

	APPENDIXES
	Appendix A - Programming Exercise Answers
	Appendix B - Chapter Checkpoint Answers
	Appendix C - Sample Programs
	Appendix D - ASCII Character Codes
	Appendix E - Memory Map
	Appendix F - Specifications
	Appendix G - Error Messages
	Appendix H - Disk BASIC Summary

	Index

